








  Programação Orientada a Gambiarra

  Um Guia Definitivo sobre a Arte da Gambiarra no Desenvolvimento de Software

  Josenaldo Matos Filho

  Auto-publicado

  2024

  © 2024 Josenaldo Matos Filho. Licenciado sob CC BY-NC-SA 4.0



Programação Orientada a Gambiarra
	1 Agradecimentos
	2 Introdução
	3 O que é POG?	3.1 Sinônimos de Gambiarra
	3.2 Programação Orientada a Gambiarra
	3.3 Referências
	3.4 Notas


	4 História da POG	4.1 O ser humano é uma máquina de reconhecer padrões
	4.2 Não basta reconhecer, tem que espalhar
	4.3 Não basta saber contar ovelhas
	4.4 Precisamos contar o tempo
	4.5 O calendário romano
	4.6 O calendário Juliano
	4.7 O calendário Gregoriano
	4.8 Chama o Ratinho
	4.9 Referências
	4.10 Notas


	5 Requisitos da POG	5.1 As dimensões dos Requisitos da POG
	5.2 Notas


	6 Dimensão Humana	6.1 Equipe Apática
	6.2 Profissionais Superestimados
	6.3 Arquiteto MacGyver
	6.4 Gerente Sem Noção
	6.5 Cliente Corrosivo
	6.6 Usuário Abrasivo
	6.7 Intrometido Inepto
	6.8 Dobrador de problemas
	6.9 Notas


	7 Dimensão Tecnológica	7.1 Tecnologia Inadequada
	7.2 Desconhecimento Técnico
	7.3 Obsolescência Adquirida
	7.4 Rigidez Arquitetural
	7.5 Projeto Malamanhado
	7.6 Notas


	8 Dimensão Estrutural
	9 Dimensão Processual	9.1 Como reduzir a Dimensão Processual sem matar a produtividade
	9.2 Encerramento processual


	10 Dimensão Temporal	10.1 O próprio tempo
	10.2 Os quatro Fs
	10.3 Janela de caos combinada
	10.4 Como manter a POG sob controle (sem virar monge da engenharia)
	10.5 Encerramento temporal


	11 Príncípios da POG	11.1 O conjunto canonico
	11.2 Como esses principios operam
	11.3 Principios, Tecnicas e Patterns
	11.4 O compromisso do POGramador


	12 Técnicas da POG	12.1 O que e uma tecnica POG
	12.2 Do principio para o teclado
	12.3 O arsenal tecnico desta secao
	12.4 Niveis de maestria
	12.5 Como ler esta parte do livro
	12.6 Encerramento da abertura


	13 Zipomatic versioning	13.1 Como funciona o ritual
	13.2 Exemplo do mundo real
	13.3 Sinais de que o Zipomatic dominou
	13.4 Por que a tecnica surge
	13.5 Exemplo didatico de diferenca
	13.6 Impacto tecnico e humano
	13.7 Como sair sem trauma
	13.8 Resumo POG


	14 Monkey Patching	14.1 Como aparece em projeto real
	14.2 Exemplo didatico (JavaScript)
	14.3 Exemplo didatico (Python)
	14.4 Quando a tecnica pode ser aceitavel
	14.5 Sinais de abuso
	14.6 Mitigacao pragmatica
	14.7 Resumo POG


	15 Incremental patching debug	15.1 Ritual de aplicacao
	15.2 Exemplo classico
	15.3 O que quase nunca entra nesse fluxo
	15.4 Por que isso e comum
	15.5 Exemplo didatico
	15.6 Risco acumulado
	15.7 Como evoluir sem parar entrega
	15.8 Resumo POG


	16 My precious	16.1 Sinais classicos
	16.2 Por que isso acontece
	16.3 Exemplo do efeito colateral
	16.4 Exemplo didatico de comportamento
	16.5 O mito da protecao
	16.6 Como desmontar o padrao sem conflito
	16.7 Resumo POG


	17 Psychoding	17.1 Etapas do transe
	17.2 Exemplo classico
	17.3 Por que Psychoding pega tao facil
	17.4 Sinais de que a tecnica virou rotina
	17.5 Exemplo didatico de uso consciente
	17.6 Como aproveitar pesquisa sem cair em Psychoding
	17.7 Risco de longo prazo
	17.8 Resumo POG


	18 Gambi Design Patterns	18.1 O que sao Gambi Design Patterns
	18.2 Por que catalogar a desgracenca
	18.3 Estrutura dos capitulos desta secao
	18.4 Do accidental para o institucional
	18.5 Relacao com Tecnicas e Principios
	18.6 Uma nota de honestidade
	18.7 Encerramento da abertura


	19 WTF / WTH / QPE	19.1 A assinatura da entidade
	19.2 Como esse padrao aparece
	19.3 Causa tipica
	19.4 Exemplo didatico
	19.5 Como evitar o efeito “codigo magico”
	19.6 O perigo social do QPE
	19.7 Correcao pragmatica
	19.8 Resumo POG


	20 RCP Pattern (Reuse by Copy and Paste)	20.1 Principio da Reflexao Reprodutoria
	20.2 Exemplo didatico
	20.3 Smells associados
	20.4 Por que times caem nisso
	20.5 Evolucao didatica
	20.6 Estrategia pratica para legado
	20.7 Resumo POG


	21 Hardcoded Data	21.1 Exemplo classico
	21.2 Sinais de que o padrao tomou conta
	21.3 Por que ele aparece
	21.4 Exemplo didatico de evolucao
	21.5 Impactos de negocio
	21.6 Correcao sem trauma
	21.7 Resumo POG


	22 Forceps	22.1 Exemplo classico
	22.2 Como reconhecer o Forceps no codigo
	22.3 Por que o time adota isso
	22.4 Impactos no medio prazo
	22.5 Exemplo didatico de abordagem melhor
	22.6 Estrategia pragmatica de correcao
	22.7 Resumo POG


	23 Ostrich Syndrome Skill	23.1 Forma ritualistica
	23.2 Sinais no projeto
	23.3 Por que acontece
	23.4 Exemplo didatico
	23.5 Risco acumulado
	23.6 Como tratar sem paralisar entrega
	23.7 Resumo POG
	23.8 Mini checklist de mitigacao


	24 Nonsense Flag Nonsense Naming	24.1 Efeito semantico
	24.2 Exemplo didatico
	24.3 Por que o time cai nisso
	24.4 Nonsense Flag: o primo perigoso
	24.5 Abordagem pragmatica
	24.6 Resumo POG
	24.7 Mini checklist de mitigacao


	25 Commented Code Implementation Comments Forever	25.1 Exemplo classico
	25.2 Problemas que esse padrao cria
	25.3 Quando isso comeca
	25.4 Exemplo didatico de alternativa
	25.5 Comentario bom x comentario ruim
	25.6 Estrategia pragmatica de limpeza
	25.7 Resumo POG
	25.8 Mini checklist de mitigacao


	26 Reinvented Square Wheel Helper	26.1 Exemplo classico
	26.2 Sintomas do padrao
	26.3 Por que isso acontece
	26.4 Exemplo didatico
	26.5 Custo oculto
	26.6 Correcao pragmatica
	26.7 Resumo POG
	26.8 Mini checklist de mitigacao


	27 You Shall Not Pass	27.1 Sintoma clássico
	27.2 Por que isso é perigoso
	27.3 Exemplo didático (controle de granularidade)
	27.4 Quando usar captura ampla, então?
	27.5 Estratégia de correção gradual
	27.6 Resumo POG


	28 Perfectness Execution Bulletproof	28.1 Como esse padrão se instala
	28.2 Exemplo didático (problema real disfarçado)
	28.3 Efeito colateral em cadeia
	28.4 Versão didática melhor (sem perder UX)
	28.5 Quando o Bulletproof já está em produção
	28.6 Resumo POG


	29 Exception Success	29.1 Como reconhecer esse padrão
	29.2 Exemplo didático (versão POG)
	29.3 Por que isso aparece em projeto real
	29.4 Impactos técnicos
	29.5 Exemplo didático (versão menos caótica)
	29.6 Resumo POG


	30 String Sushiman	30.1 Exemplo classico
	30.2 Sinais de maturidade Sushiman
	30.3 Por que aparece
	30.4 Exemplo didatico
	30.5 Impacto operacional
	30.6 Mitigacao pragmatica
	30.7 Resumo POG
	30.8 Mini checklist de mitigacao


	31 Sleeper Human Factor	31.1 Onde esse padrao aparece
	31.2 Motivos reais para adocao
	31.3 Exemplo didatico
	31.4 Impacto tecnico
	31.5 Como remover com baixo risco
	31.6 Sobre UX real
	31.7 Resumo POG


	32 Black Cat In A Dark Room	32.1 Anatomia da gambiarra
	32.2 Cheiro técnico associado
	32.3 Exemplo didático de evolução
	32.4 Por que times continuam usando Map genérico
	32.5 Como usar sem virar caos
	32.6 Resumo POG


	33 Mega Zord	33.1 Caracteristicas classicas
	33.2 Exemplo didatico (versao POG)
	33.3 Por que times criam Mega Zord
	33.4 Efeito colateral
	33.5 Exemplo de decomposicao minima
	33.6 Estrategia pragmatica de reducao
	33.7 Resumo POG


	34 THUNDER MEGA ZORD	34.1 Como identificar
	34.2 Exemplo didatico de risco
	34.3 Por que esse padrao surge
	34.4 Versao didatica mais segura
	34.5 Migracao incremental possivel
	34.6 Resumo POG
	34.7 Mini checklist de mitigacao


	35 Controller Confusion	35.1 De onde isso vem
	35.2 Exemplo didático (Controller Confusion clássico)
	35.3 Sinais de que virou confusão
	35.4 Versão didática com separação mínima
	35.5 Como reduzir sem reescrever tudo
	35.6 Resumo POG


	36 No More Layers	36.1 Exemplo classico
	36.2 Consequencias praticas
	36.3 Onde esse padrao e comum
	36.4 Exemplo didatico de separacao minima
	36.5 Correcao gradual
	36.6 Beneficio real de manter camadas
	36.7 Resumo POG
	36.8 Mini checklist de mitigacao


	37 Db Is Our God	37.1 Dogmas do padrao
	37.2 Exemplo didatico
	37.3 Sintomas de culto ao banco
	37.4 Por que isso acontece
	37.5 Exemplo de equilibrio pragmatico
	37.6 Estrategia de migracao
	37.7 Resumo POG


	38 Snow White Returns	38.1 Como o padrao se forma
	38.2 Exemplo didatico (caotico)
	38.3 Risco principal
	38.4 Versao mais organizada
	38.5 Como corrigir sem guerra
	38.6 Resumo POG
	38.7 Mini checklist de mitigacao


	39 Conclusões	39.1 O que este livro tentou mostrar
	39.2 As quatro grandes licoes
	39.3 O paradoxo do POGramador
	39.4 Sobre culpa e responsabilidade
	39.5 Um compromisso para levar daqui
	39.6 Encerramento


	40 Bibliografia Consolidada	40.1 O que é POG?
	40.2 História da POG





  
    	
      Title Page
    

    	
      Cover
    

    	
      Table of Contents
    

  




1 Agradecimentos

Há muitas pessoas a quem eu devo agradecer. Se eu fosse nomear todas aqui, isso seria uma listagem maior que uma nota fiscal de quem comprou uma bala no supermercado. Então, vou agradecer apenas algumas pessoas muito queridas.

A ordem de apresentação não implica em uma ordem de importância em minha vida. Até porque nenhum de vocês é mais importante que minhas gatas Bugada e Lesada.

Primeiro, vou agradecer à minha família. Vocês fizeram um grande trabalho. Exceto, claro, quando levaram 15 anos pra perceber que a criança com a cara colada na TV precisava usar um óculos mais potente que o Telescópio Espacial James Web. E isso porque a família me deu 2 TIAS ENFERMEIRAS MAIS MÍOPES DO QUE EU ! Já sabemos quem cabulou as aulas de genética pra ir pro boteco. Mesmo assim, eu amo vocês!

Eu posso não acreditar em Deus, mas acredito em anjas, pq eu já conheci três: Luciana Ribeiro Matos, minha irmã de faculdade; Elma dos Passos Rabello, minha primeira sogra e mãe de rim; e Maria Teresa Lima (em memória), minha segunda sogra e saudosa companheira de papos malucos. Obrigado por me dedicarem tanto amor, apesar de minhas falhas e imperfeições. Vocês me mostraram que esse mundo ainda vale a pena. Levarei vocês pra sempre no meu coração. No rim não, porque o rim eu perco.

Um agradecimento especial à minha companheira, Cassiana, que trouxe a luz do amor de volta à minha vida. E outro agradecimento aos nossos filhos Joseana, Cassinaldo, Jossinalna, Cijomar e Prosongolôndia, que não nasceram ainda, por não tentarem me matar devido aos nomes que vou por neles. Eu acho.

Nenhum obrigado aos bolsonaristas e antivacinas. A esses, eu não tenho nada o que agradecer. A esses, eu só desejo que peguem fungo de pneu de caminhão no símbolo químico do cobre.

A todo mundo que acha que eu deveria citar aqui, mas não citei, eu usarei as palavras de Bilbo Bolsista: Eu não conheço metade de vocês a metade do que gostaria; e gosto de menos da metade de vocês a metade do que vocês merecem.




2 Introdução

Saudações, POGramadores!

Sejamos sinceros… Você chegou a esse livro porque está cansado. Você deveria estar trabalhando, estudando, desenvolvendo o software que vai deixar seu chefe mais rico… Mas você está de saco cheio e resolveu gastar seu tempo lendo sobre Gambiarras.

Bem, pode comemorar. Você está no lugar certo. Já pode tocar Aleluia no celular.

Aqui, você não vai aprender a resolver suas gambiarras. Pode tirar essa ilusão desse seu coraçãozinho maltratado. Aqui, você vai aprender a abraçar o GLS (Gambi Life Style) de vez.

Durante a leitura deste tomo sagrado, sua mente passará pelo mais avançado curso de PNL (POGramação Neuro Linguiça), que capacitará você a identificar, utilizar e idealizar as POGs que tornarão o inferno uma amostra grátis do seu trabalho.

O livro é dividido em 3 partes.


	Conceitos

	Técnicas

	Gambi Design Patterns




[image: Diagrama de estrutura do livro {803x403} {caption: DIagrama sofisticado demonstranto a estrutura do livro}]
Diagrama de estrutura do livro {803x403} {caption: DIagrama sofisticado demonstranto a estrutura do livro}

Na primeira parte desse livro, “Conceitos” navegaremos pelos principais conceitos ligados à arte de criar Gambiarras.

O que é um POGramador? O que é uma Gambiarra? Quais o requisitos que um ambiente deve atender para que a Gambiarra floresça? Quais princípios um POGramador deve ter marcado no âmago de seu ser?

Na segunda parte, Técnicas, conheceremos as (rufem os tambores!) técnicas que constam do arsenal de um POGramador.

Por fim, veremos a aplicação dessas técnicas na terceira parte, Gambi Design Patterns, que é um catálogo dos principais padrões de projeto da desgracença.

Ao final deste livro, você, POGramador, terá uma caixa de ferramentas tão vasta na capacidade de causar tragédias que saberá que o termo “Caixa de Pandora” só existe porque você não nasceu antes. Se tivesse nascido, seria “Caixa de POGramador”.

Boa leitura e que Lady Murphy te acompanhe.




3 O que é POG?

Gambiarra.

Ao assumir o sacerdócio da área da POGramação, a palavra Gambiarra é cravada em nossos cérebros e passa a fazer parte do nosso vocabulário.

Muito se discute sobre os benefícios e malefícios da Gambiarra. A maioria faz piada. E muitos até tentam resistir. Inutilmente, claro. A Gambiarra torna-se uma parte importante de nossas vidas, quer você queira ou não.

Mas, afinal, o que é uma Gambiarra?

Dentre os civis (aqueles que não comungam do conhecimento sagrado da POGramação), a palavra Gambiarra quase sempre tem uma conotação ligada a adaptações ineficientes ou soluções improvisadas pra problemas que exigem técnicas mais apuradas.

Uma acepção menos pejorativa e mais objetiva é o uso desta palavra pra designar o conjunto de lâmpadas em série, usado para iluminar uma área onde ocorrerá um evento, como uma peça de teatro, uma festa junina ou um bacanal de pessoas sem um pingo de vergonha.

E dessa forma, é que você, jovem POGramador, deve ver a Gambiarra: como a luz que ilumina o espetáculo que é o seu código!


“Por definição, a Gambiarra é aquilo que é de difícil concepção, de inesperada execução para tornar fácil o uso de algo que sequer deveria existir.” [@Desciclopedia2016]



Ou seja, a Gambiarra é a solução técnica planejadamente improvisada e resultante de uma inspiração momentânea, com o intuito de resolver um problema complexo, onde o uso de técnicas tradicionais incorrem em alto custo energético para o resolvedor.

A duração da gambiarra é limitada, devendo essa ser substituída, assim que possível, por uma solução técnica convencional. Portanto, uma boa gambiarra tem, como tempo de permanência, o valor mínimo Tg (Tempo da Gambiarra), sendo que Tg tende ao infinito.

Por ter baixo custo presente, seu custo futuro tende a ser ignorado pelo gambiarrizador, já que esse custo certamente será assumido por terceiros. Portanto, a Gambiarra se mostra extremamente vantajosa, o que justifica a sua utilização.


3.1 Sinônimos de Gambiarra

O termo Gambiarra possui vários sinônimos, que são usados nas mais diversas áreas. Em sua maioria, os sinônimos são eufemismos, utilizados como forma de esconder, dos civis, que uma Gambiarra está sendo usada, já que a mente primitiva do ser humano comum é incapaz de perceber o brilhantismo dessa solução.

Dentre estes sinônimos, temos:


	ATI - Aparato Técnico Improvisado

	ATND - Artifício Técnico Não Documentado

	CPMF - Conserto Provisório Mas Funciona

	DAT - Dispositivo Alternativo Temporário

	ERR - Engenharia de Reparos Rápidos

	MASC - Medida Adaptativa à Situações Críticas

	MTEDM - Manutenção Técnica com Elementos Disponíveis no Momento

	MUTRETA - Método Único de Tratamento e Resolução de Erros Totalmente Adaptável

	REZA - Reestruturação Emergencial Zuada Auxiliar

	RTA - Recurso Técnico Avançado

	RTA - Recurso Tecnológico Alternativo

	RTDM - Recurso Técnico Disponível no Momento

	RTE - Recurso Técnico de Emergência

	RTI - Recurso Técnico Inteligente

	STCT - Solução Técnica de Cunho Temporário



No contexto da POGramação, temos também os seguintes sinônimos:


	ADP - Adaptação De Programador

	CACA - Código Avançado Completo e Adaptável

	CAGADA - Código Alternativo Gerador de Algoritmos Duramente Aplicáveis

	DADA - Deixa Assim, Depois Arrumo

	IST - Improvisation Solution Tabajara

	ITAC - Implementação Técnica Abstratamente Controversa

	RAP - Recurso Avançado de Programação

	TAPA - Técnica Alternativa de Programação Avançada



Podemos notar como o uso de siglas é comum na denominação da Gambiarra. Portanto, a lógica é clara: se algo, na computação, é nomeado com uma sigla, provavelmente é uma Gambiarra.

O exemplo mais notório dessa regra é o acrônimo recursivo GNU, que significa “GNU is Not Unix”, e denota uma Gambiarra que se gambiarriza em si mesma.

Mas existe um termo que merece uma explicação adicional, devido às suas peculiaridades: Marreta1.


3.1.1 Marreta

O termo “Marreta” é usado por quem associa o poder gambiarrizador à ferramenta Marreta, que é usada no lugar de um martelo. O POGramador também associa o poder gambiarrizante ao deus Thor, que resolvia tudo na base do martelo.

A origem do termo está no ditado “Pra quem só sabe usar martelo, todo problema é prego”.

Obviamente que podemos discutir o porquê de não se usar o termo “Martelo”, mas o uso do termo correto associado ao ditado é uma incoerência gambiarrística! A própria utilização da marreta, no lugar do martelo, demonstra uma gambiarra verbal, o que fecha o ciclo lógico da gambiarra numa metagambiarra.



3.1.2 Gambiarra em outras línguas

A gambiarra é um conceito universal. Não importa o país que você visite, sempre existe uma criatura abençoada alterando alguma coisa, de forma improvisada, para que um propósito não planejado seja atingido ou algum reparo desejado, mas impossível, seja tornado possível.

Sabendo disso, POGramadores bem informados compreendem que não precisam apenas ter competência, eles precisam DEMONSTRAR competência. E a forma mais simples de demonstrar competência é na comunicação verbal, principalmente com cliente e civis.

O POGramador deve se utilizar de todo artifício verbal em seu arsenal para mostrar que é dotado de capacidades técnicas que o marcam como um profissional de primeira linha. Dentre essas habilidades, está a capacidade de dominar o inglês2.

Por essa razão, é muito comum o uso do vocábulo workaround.

Sempre que você ver um profissional usando o termo workaround, saiba que esse profissional é o POGramador de alto nível.

Outros sinônimos, em inglês, que são poucos usados no Brasil e, portanto, podem aumentar a pontuação do POGramador, são as expressões kludge, jugaad, jury rig e “quick and dirt”.

Outra expressão com a qual devemos ficar alerta é “Do It Yourself” (DIY). Sempre que essa expressão surge, quase sempre em um livro de feitiçarias malégnas3 disfarçado de tutorial, pode ter certeza de que existe uma criatura condenada sumonando uma gambiarra malégna, por conta própria.

Nas mãos de pessoas despreparadas, como civis e programadores, isso quase sempre acaba num arremedo de projeto, como aquela sua tia que tentou fazer um jarro chinês e acabou com uma réplica do Útero de Satanás no meio da sala.

E por falar em POGramação…




3.2 Programação Orientada a Gambiarra

Dentre todas as formas de encarnação que a Gambiarra possui, este livro tratará de sua forma digital mais profícua4: A POG (Programação Orientada a Gambiarras).


A Programação Orientada a Gambiarras (POG ou WOP – Workaround-oriented programming) é um paradigma de programação de sistemas de software que integra-se perfeitamente a qualquer grande Paradigma de Programação atual. [@Desciclopedia2016]



Este paradigma permite que utilizemos de Gambiarras para resolver problemas computacionais, não computacionais, espirituais, econômicos e até mesmo sexuais, de forma a garantir o sucesso do projeto.

A aplicação da POG tende a criar mais problemas do que resolve, criando, dessa forma, um círculo virtuoso que garante empregos a milhões de POGramadores pelo mundo. Cada problema criado significa mais trabalho e, portanto, mais empregos!

Para compreender a POG, é necessário compreender quais os requisitos para a formação da POG, quais os princípios que guiam o POGramador e quais as técnicas que esse POGramador usará. Veremos esses tópicos nos próximos capítulos.



3.3 Referências



[^ref]



3.4 Notas








1. O motivo pelo qual o termo “marreta” é tão importante é bastante óbvio, mesmo para o leitor mais desatento: é porquê eu gosto e eu quero. Se você não percebeu isso, sugiro que procure um profissional especialista(astrólogo, vidente, adivinho ou áreas correlatas). A propósito: Porque as pessoas dizem “profissional especialista”? Existe algum especialista que não seja profissional? Um especialista nato? “Conheça Enzo Rodrigo, especialista em computação quântica aos 4 anos de idade, entre uma colherada de mingau e outra, resolveu o problema da conjunção telepática de gatos robóticos.”



2. O idioma, não um homem proveniente da Inglaterra.



3. Se Shiryu disse que é malégna, então é malégna.



4. O que capirotos é “profícua”? Não sei. Mas parece termo de autor chique, então, como bom POGramador, vou usar sem saber o que é, aplicando o Gambi Pattern RCP (Reuse by Copy and Paste).





4 História da POG

Quando procuramos definir a primeira POG da história, a maior dificuldade está no fato de que o bom POGramador não deixa rastros de seus méritos, pois POGramador não usa comentários(a não ser que sejam inúteis).

Esse ambiente de incertezas é terreno fértil para o surgimento de boatos, lendas e mitos, que acabam por transformar a história da POG em um desafio a qualquer historiador. E, como diz o ditado, “quem não tem história, inventa”. 1


Qualquer afirmação suficientemente convicta é indistinguível da verdade. [@Cabeca2020]



Uma dessas lendas diz que a primeira POG foi criada pelo Papa Gregório XIII2.


4.1 O ser humano é uma máquina de reconhecer padrões

Pra entender como surgiu a provável primeira POG, precisamos voltar no tempo e entender o porque o ser humanos inventou de dar um nome a cada dia.

Pense em nossos antepassados. Não na sua avó, ou no avô dela. Vamos voltar muito antes disso. Vamos voltar ao tempo em que éramos apenas macacos pelados que acabaram de descer das árvores.

Nesse tempo, o ser humano não tinha calendário. Não tinha relógio. Não tinha nada que pudesse dizer “amanhã é segunda-feira”.

Nossas necessidades eram bem mais simples: comer, dormir, fugir de predadores e procriar. E nós nos tornamos muito bons nisso. Mas como?

Seleção Natural. Vamos chamá-la carinhosamente de Tia Selena.

Tia Selena não escohe os mais fortes, nem os mais inteligentes. Muito menos ainda os mais bonitos. Ela escolhe os que se adaptam melhor ao ambiente. Os que são capazes de conseguir recursos necessários para a própria sobrevivência e para sua prole.

Mas como saber o que é comida e o que é veneno? Como saber o que é predador e o que é amigo? Como saber o que é o sexo oposto e o que é uma ovelha chamada Beeelinha?

Quem era capaz de encontrar as melhores frutas, ou de enxergar aquele coelho carnudo escondido no meio do mato, comia. Quem achava água, bebia. Quem era capaz de encontrar uma boa caverna pra se esconder, dormia pra ver o dia seguinte. E quem se tocava de que aquele coelho laranja e preto, da altura de um boi, e com garras do tamanho de uma cara humana, não era um coelho, mas sim um tigre, sobrevivia.

Acontece que nosso cérebro é uma máquina de reconhecer padrões. Ele é capaz de identificar padrões em qualquer coisa que ele pode ver, ouvir, cheirar, tocar, degustar ou imaginar.

Geração após geração, os mais capacitados em reconhecimento de padrões se mostravam mais aptos a sobreviver. E quem sobrevive, se reproduz e passa pra frente seus genes.

Dessa forma, Tia Selena foi aperfeiçoando nossa capacidade de reconhecer padrões.

E essa máquina de identificar padrões é tão boa nisso que ela chega até mesmo a identificar padrões em coisas que não existem fisicamente. É o que acontece quando você vê um rosto na nuvem, um coelho na lua ou interesse sexual por parte de uma mulher que só foi simpática com você.



4.2 Não basta reconhecer, tem que espalhar

Mas, além de reconhecer padrões, precisávamos também de um jeito de ensinar esses padrões aos nossos companheiros humanos. Se eu aprendo que um tigre é um predador perigoso, eu preciso ensinar isso aos meus companheiros.

Eu não chamo o Josiscleisson e solto ele na frente do tigre, esperando que ele sobreviva ao ataque do tigre e aprenda por conta própria. Eu não preciso empurrar Josiscleisson do Barranco da Morte Certa pra ele entender que se cair nesse barranco, vai morrer.

É muito mais simplesChamar o Josiscleisson e dizer “Olha, aquele coelho laranja gigante tem garras do tamanho de nossa cara! E, ao invés de planta, ele come gente! O nome dele é Desmembrador! Fica longe dele!”.

O que nós fazemos é nos COMUNICAR. Nós explicamos, aos outros humanos, como as coisas funcionam. E, ao nos ouvir, eles aprenderm com a nossa experiência, evitam nossos erros e ganham ao repetir nossos acertos. Dessa forma, a comunicação se tornou um dos pilares da nossa sobrevivência.

Essa capacidade de nos comunicar nos levou a desenvolver uma rebuscada linguagem. E, como parte dessa linguagem, nós desenvolvemos também a capacidade de contar.



4.3 Não basta saber contar ovelhas

Uma vez que o ser humano começou a viver em grupos maiores, houve a necessidade de mais alimento. E, durante essa busca por mais alimento, nossa capacidade de subverter padrões nos levou a uma gambiarra maravilhosa: a cerveja!

No tópico anterior, falávamos de um ser humano moleque, o ser humano livre, cuja vida se limitava a nomadear por aí, catando o que achava pela frente, se escondendo onde podia e vivendo do que a terra dá.

Esse ser humano comia grãos, como a cevada. Inicialmente, ele comia a cevada como ela é. Mas, com o tempo, ele começou a perceber que, se ele deixasse a cevada de molho em água, ela ficava mais macia.

O gosto deveria ser uma droga, então não levou muito tempo pra algum macaco pelado com um pouco mais de cérebro perceber que se moesse os grãos, a mistura com a água ficaia mais fácil de consumir.

Com o tempo, o homem foi adicionando coisas a essa mistura. E, em algum momento, não se sabe se intencionalmente ou não, veio a grande sacada: assar essa mistura resultava num produto muito mais gostoso e duradouro: o pão.

O pão é um dos principais alimentos da humanidade há milênios. as primeiras evidências de pão datam de 30 mil anos atrás!

E, pra ter mais pão, ao invés de sair desembestado pelo mundo, procurando mato, o macaco pelado percebeu que poderia ter muito mais grãos se plantasse os graõs novamente. Assim nasceu a agricultura.

Além do pão, o homem também gostava de carne. Muita carne. E sair por aí caçando os bichos já não era tão eficiente assim. Em alguns casos, nós exterminamos todos os bichos de uma região. E a falta de carne significa que passaríamos fome.

Pra resolver esse problema, nós descobrimos que não precisávamos comer todos os bichos. Observamos que os bichos também se preproduziam, de tempos em tempos. E, pra ter mais carne, bastava a gente criar mais bichos.

Mas, como o ser humano é um ser curioso, ele começou a experimentar outras formas e preparar o pão. E, em um belo dia, talvez de uma mistura de pão estragada, ou de trigo apodrecido, o macaco pelado descobriu que, se bebesse essa mistura, ele ganhava super poderes. O homem descobriu o álcool.

Dessa forma, o que era pra ser um erro virou uma feature e o álcool passou a fazer parte da vida humana.

Nesse processo de descobrir o pão, a cerveja e o churrasco, o ser humano perdeu o ímpeto de sair livre pelo mundo. Ao ser domesticado pelo trigo e pelo gado, o homem criou um curral pra si mesmo e chamou isso de “cidade”.

Assim, o ser humano se fixou e passou a viver no mesmo local, onde ele poderia plantar e colher, criar e matar, sem precisar se deslocar. E, talvez pelotempo extra que ganhou ao se tornar sedentário, talvez pela necessidade de controlar seus rebanhos, o homem começou a contar. E não parou mais.



4.4 Precisamos contar o tempo

O homem agora domina a terra e o gado. Ele é senhor do ambiente. E, como todo ser imundiçado que é, ele nunca fica satisfeito e quer mais. Ele quer mais terra, mais gado, mais comida, mais bebida, mais mulheres, mais filhos, mais poder.

Acontece que a natureza não é um buffet de recursos grátis, que basta você chegar e pegar. A natureza parece mais com uma liquidação de loja de departamento, daquelas onde até o anticristo chora e pede perdão, onde você perde sua Air Friyer pra uma família, de 18 pessoas enquanto é espancado com galinhas gritadeiras de borracha.

Na dureza da vida, o macaco pelado percebeu que nem sempre ele precisa plantar e criar. Às vezes, ele pode simplesmente tomar o que é do outro. Pra que plantar e colher, se eu posso deixar outro ter esse trabalho e, depois, tomar dele?

Dessa forma, o homem aprendeu a guerrear. E como o homem guerreou.

Agora, o macaco pelado precisa saber quando chove. Quando deve plantar. Quando deve colher. Quando deve abater seu rebanho. Quando deve fazer um sacrifício ao seu deus. Quando deve sair para a guerra. Quando deve voltar da guerra. Quando seu filho deveria ter nascido. Quando deve tirar satisfação com Juvenal, por ele ter visitado sua esposa na guerra e seu filho ter nascido com a cara do Juvenal.

O ser humano que não sabe contar o tempo é um ser humano perdido.

Mas não adianta o macaco pelado contar o tempo em ciclos lunares, se ele não sabe quando é a próxima lua cheia. Não adianta contar o tempo em ciclos solares, se ele não sabe quando é o próximo solstício. Não adianta contar o tempo em ciclos de chuva, se ele não sabe quando é a próxima estação seca.

Então, junto com essa nossa necessidade patológica de contar e estruturar as coisas, nós começamos também a registrar as coisas. E assim nasceu a escrita.

E foi assim Tia Selena ensinou um monte de macacos pelados a reconhecer padrões, a se comunicar, a plantar, a criar animais, a cozinhar, a se embebedar, a guerrar, a levar chifre, a contar e a escrever.



4.5 O calendário romano

A ideia parece simples: você pega um imundiçado sem Netflix e põe ele pra observar onde o caminho que o sol fez no céu, desde o momento em que nasceu até o momento em que se pôs. E manda ele registrar isso. Essa parte é muito importante!

Daí, ele acorda todo dia, antes do sol nascer, e passa o dia inteiro medindo o caminho do sol. Então, ele vai perceber (se não for uma anta) que o Sol nasce e se põe, a cada dia, num lugar diferente do dia anterior.

Isso ocorre até que, num dia, o sol nasce e se põe no mesmo lugar do primeiro dia. Pronto. Temos um ciclo. Agora, basta ele contar quantos dias se passaram. E, se ele repetir esse processo algumas vezes, ele consegue dizer quanto tempo dura UM ANO.

Sim, fizeram isso. E mais de uma vez, na história da humanidade. E, dado o número de vezes em que os calendários mudaram, ou o processo é mais difícil do que parece, ou as pessoas encarregadas dse mentir se entediavam facilmente, largavam o projeto no meio e inventavam números.

Muitos povos tentaram esse processo. E um que se destacou bastante nisso foram os romanos.

O primeiro calendário romano era um calendário Lunar, de 10 meses. Segundo a lenda, foi implantado na criação de Roma, em 753 a.C.

Esse calendário tinha meses com 30 ou 31 dias, com um total de 304 dias. Os 61 dias restantes eram o inverno, e ninguém ligava pra contar o tempo no inverno.

Aqui nós já vemos um caso fantástico de POG, em que os 61 dias eram simplesmente COMENTADOS, num claro uso de Commented Code Implementation!


Maledicite scribarum! Nemo curat id quod fit in hieme! Istam lineam commentarium pone. Nemo vocabit si sexaginta unus dies interiit.

– Rômulo, fundador de Roma (753 a.C.)



Em 713 a.C. Numa Pompílio fez a primeira reforma no calendário romano, diminuindo o número de dias de alguns meses e aumentando o número de meses para 12.

Dessa forma, o ano agora tinha 355 dias. Como resolver os dias faltantes?

Com gambiarra, claro!

A cada 2 anos, um mês extra, de 22 ou 23 dias, era adicionado ao final de “Fevereiro”. E a decisão de inserir esse mês cabia ao Pontífice Máximo3. Como era um ser humano a decidir, é óbvio que nem sempre isso acontecia. E, quando acontecia, nem sempre era feito da mesma forma. O resultado era que, às vezes, o ano não era tão previsível assim.

Parece familiar?



4.6 O calendário Juliano

Em 46 a.C. Julio César, resolveu botar ordem nesse quengaral. Com a ajuda do sábio Sosígenes de Alexandria, Júlio Cézar, na época ocupando o cargo de Pontífice Máximo, organizou um novo calendário.

Esse novo calendário entrou em vigor no dia 1 de janeiro de 45 a.C. Dentre suas principais características, temos:


	Ano de 365 dias

	12 meses (sem meses intercalares)

	Acréscimo de 1 dias, de 4 em 4 anos, para compensar a diferença de 4 horas, já que o ano trópico tem 365 dias e 4 horas

	O primeiro dia do ano passa a ser 1 de janeiro



Esse calendário durou bastante tempo. Dada sua longevidade, pode-se dizerque era um calendário bastante estável. Contudo, ele tinha alguns “pequenos” problemas:


	Não representava o tempo real que a terra leva pra girar em torno do Sol

	Como os anos bissextos ocorriam a cada 4 anos, a contagem do tempo ia, aos poucos, se desencontrando dos fenômenos naturais, como a mudança das estações, que ocorriam em datas fixas.

	Com o passar do tempo e o acúmulo dos erros, a data da páscoa ia se afastando gradualmente do Equinócio da Primavera.



Após alguns séculos, a diferença nessas datas já era de dias. E, como a páscoa era um feriado religioso, isso começou a causar problemas.

Como Júlio César foi um bom POGRamador, ele deixou esse pepino pra outro resolver lá na frente. Coube ao Papa Gregório XIII, em 1582, resolver esse problema.



4.7 O calendário Gregoriano

Após vários séculos, a diferença entre o calendário Juliano e o ano Solar foi se acumulando. Em 1582, o equinócio de primavera já ocorria 10 dias antes da Páscoa! E essa diferença tendia a se acumular ainda mais.,

Por consequência, teríamos na época, duas festividades, a comemoração do Equinócio de Primavera e a comemoração da Páscoa com 10 dias de diferença (nessa hora, os patrões já estão se coçando de alergia). E, no futuro, com a diferença almentando, logo teríamos a Páscoa sendo comemorada em pleno verão do hemisfério norte, com coelhas de bikini e padres ensandecidos explicando que a busca pelo ovos deveria ser um símbolo de vida e renacismento e não uma festa em homenagem a Sodoma e Gomorra!

Obviamente que essa situação era insustentável para a religião cristã e uma atitude precisava ser tomada.

Gregório XIII, então, resolveu fazer uma reforma no calendário. Ele convocou um time de especialistas, incluindo:


	Christopher Clavius, jesuíta alemão, sábio e matemático

	Ignazio Danti, dominicano, matemático, astrônomo e cartógrafo italiano

	Luigi Giglio médico, filósofo, astrónomo e cronologista italiano.



Esse time de estrelas trabalhou nesse problema por 5 anos, após os quais o Papa, em 24 de Fevereiro de 1582, publicou a bula papal Inter Gravissimas, com as mudanças no calendário.

A principal mudança é que o dia seguinte à quinta feira, 4 de outubro de 1582, não seria sexta feira, 5 de outubro, mas sim sexta feira, 15 de outubro. O papa simplesmente COMENTOU 10 dias!

Além disso, o algoritmo de definição do ano bissexto passou por uma pequena mudança. Agora, os anos bissextos seriam definidos da seguinte forma:


	Anos múltiplos de 4, exceto os múltiplos de 100, mas incluindo os múltiplos de 400



Inicio
    Declare ano Inteiro;
    Declare bissexto Booleano;
    Leia(ano);
    Se ( ano módulo 400 é 0 ) então
        bissexto=Verdade;
    Senão
         Se (ano módulo 4 é 0 E ano módulo 100 é diferente de 0) então
             bissexto=Verdade;
         Senão
             bissexto=Falso;
Fim


Com essas mudanças, o calendário Gregoriano tornou-se, com o pasar do tempo, o calendário mais usado no mundo. Entretanto, ele não é perfeito e, em 4909, o calendário estará adiantado em UM dia em relação ao calendário solar. Mas isso é problema pra outro POGRamador resolver lá na frente.



4.8 Chama o Ratinho

Muitos afirmam que o Papa Gregório XIII foi o criador do Ano Bissexto. Mas, como vimos, isso é um erro!

É óbvio que um POGramador experiente é capitalista com os méritos, socialista com os erros e autoritário com a culpa. Mas o Gregório nem sequer tentou assumir a autoria desse projeto!

A ideia de dias a mais para compensar o descompasso entre o calendário e o ano solar é usada em diversos calendários ao longo da história. Hoje, parece simples contar quanto tempo tem um ano, mas isso já foi um grande desafio!

O ano bissexto, especificamente, foi introduzido no Calendário Juliano. Portanto, se considerarmos o Ano Bissexto com a primeira POG, seria Júlio César o primeiro POGramador.

Devido a essa confusão, que atribui os mérito da criação do Ano Bissexto ao Papa Gregório XIII, é que ele é considerado o Padroeiro dos POGramadores e, no dia 29 de Fevereiro, é comemorado o Dia Internacional da POG.



4.9 Referências



[^ref]



4.10 Notas








1. Será que a ficcção é a gambiarra do historiador? Fica o questionamento.



2. Em minha opinião, o próprio sistema de numeração romano é uma grande POG. “Julius, precisamos de símbolos para os números”, disse César. “Que nada, César. Usa letra mesmo, que vai dar menos trabalho. Lá na frente, alguém troca”.



3. Maximus Pontifex: Na Roma antiga, o Pontífice máximoera o sacerdote supremo do colégio dos sacerdotes, a mais alta dignidade na religião romana.





5 Requisitos da POG

Além de empregar POG como acrônimo para Programação Orientada a Gambiarra, temos também o termo “pog”, usado corriqueiramente como sinônimo de “uma gambiarra”, ou seja, uma simples unidade de gambiarra implementada por um POGramador. Assim, é comum que um POGramador diga “eu fiz uma pog” quando descreve o artefardo1 resultante de seu trabalho.

No mundo do desenvolvimento de software, existe a noção de que uma pog é resultado do esforço laboral de um POGramador. Tal noção, apesar de parecer bastante lógica, é um engano tão ardiloso que é capaz de enganar até mesmo as mentes mais sagazes.

Um POGramador não é o criador da pog. Ele é apenas um conduíte para uma pog que deseja vir a este mundo. O trabalho do POGramador é apenas sumonar essa pog, tal qual faria para sumonar um demônio. Portanto, uma pog não é criada, ela é sumonada. E, para que este ritual seja bem sucedido, é preciso que certos Requisitos sejam cumpridos.

De que Requisitos estamos falando? Não, não estamos falando de sacrificar um virgem2. Estamos falando de condições que afetam as probabilidades do nascimento de uma pog.

Os Requisitos da POG podem ser classificados em diversas categorias, de acordo com o ponto de vista sob o qual olhamos esses Requisitos.


5.1 As dimensões dos Requisitos da POG

Durante milhares de anos, a humanidade encarou o mundo em 3 dimensões: largura, altura e profundidade. A ciência do século XX e a ficção científica acabaram por nos desvelar a possibilidade encararmos a realidade pelo prisma de mais dimensões. Agora, tempo é uma dimensão. Alguns modelos que explicam a realidade apontam a existência de até 11 dimensões!

Podemos, portanto, utilizar o conceito de dimensões como uma forma de classificar e melhor compreender cada um desses requisitos. E porque o conceito de dimensões? Porque fica muito mais estiloso, óbvio! Se a ciência e a realidade não concordam com minha noção de estilo, elas duas que lutem!

Vejamos, portanto, quais são os Requisitos da POG, de acordo com cada uma das dimensões.



5.2 Notas








1. Um artefardo é um artefato que cria, para a equipe, um fardo extra. Dessa forma, um artefardo é um ativo valioso para o POGramador, pois exige desse mais trabalho, o que ajuda a manter seu emprego.



2. Até mesmo porque os valores mudaram e a falta de experiência sexual já não é um atributo tão valorizado. Que tipo de divindade tapada e ajamantada deseja o sacrifício de um estagiário sexual? Porque não exigir o sacrifício de um ser humano dotado de experiência? Porque não solicitar o sacrifício de um sênior da putaria, de um arquiteto da lascívia ou uma diretora da luxúria?





6 Dimensão Humana

Criar software é transformar o âmago do ser humano em impulsos digitais. E, como tal, o resultado não poderia ser outro: uma sucessão de erros e desastres que trabalham pra realizar uma tarefa.

Um bom POGrama é um amontoado de coisas escritas que tem a capacidade de fingir resolver um problema enquanto cria vários outros. O fator humano é, portanto, o principal influenciador da POG, o ingrediente com sabor mais forte nessa sopa de desgraça que leva à manifestação digital de uma pog.

Os Requisitos da POG classificados na Dimensão Humana são aqueles produzidos diretamente pela participação humana nesse processo. Não é apenas nossa presença danosa que permite que a POG floresça. É necessário que essa presença ocorra encarnada em algum dos seguintes estereótipos.


6.1 Equipe Apática

Quer ver a pog se espalhar como erva daninha num jardim bem nutrido? Entregue seu projeto a uma equipe apática.

Não importa qual desgracença desperte de sua caixa de pandora dos infernos, eles não se abalarão. Dia após dia, essa equipe mostrará que não se importa com absolutamente nada além de seus salários. E, por isso mesmo, estarão dispostos a usar qualquer recurso disponível que garanta o pagamento mensal.

Uma equipe apática não se importa com o passado e não liga para o futuro. A única coisa que eles querem é que alguém lhes diga o que fazer (desde que não dê muito trabalho) e que seu pagamento os aguarde, ao fim do mês. Nada mais importa. Assim, se uma pog for útil pra resolver o problema atual, eles a usarão sem um pingo de remorso.

Dessa forma, mesmo que um pequeno jardim de pogs se torne a nova Floresta Amazônica da Calamidade, uma Equipe Apática não vai se abalar para resolver nada disso.



6.2 Profissionais Superestimados

Junto com uma Equipe Apática, quase sempre aparece um Profissional Supervalorizado, aquele profissional que todo mundo acredita que ele sabe o que faz e que vai resolver todos os problemas. Evidentemente que todos os problemas caem no colo dele e ele acaba sobrecarregado.

Nesse cenário, o Profissional Supervalorizado acaba por cometer desde os erros mais simples até os erros mais catastróficos. E são erros tão épicos que as pessoas o olham com admiração e pensam “UAU, olha só o tipo de problema com o qual tem que lidar!”, sem perceber que ele mesmo (e sua Equipe Apática) é que criaram esses problemas.

Um Profissional Supervalorizado acaba, portanto, sempre recorrendo à pogs para resolver aquilo que deveria resolver com resoluções resolvedoras de alta resolutividade, mas que ele não conhece. E que ninguém percebeu, ainda, que ele não conhece.

Esse profissional costuma ser um grande invocador de pogs da equipe, o que acaba por aumentar sua fama e o quanto ele é superestimado.



6.3 Arquiteto MacGyver

Numa equipe POG, ou mesmo em uma empresa usuária de POG, é muito comum a existência de uma figura mítica: o Arquiteto MacGyver.

Esse profissional ostenta capacidades excepcionais de produção de sistemas em tempo recorde, com mínimos recursos. Dê a ele 2 dias e uma garrafa de café, e ele volta com um ERP completo.

O que muita gente não sabe é que o Arquiteto MacGyver é um mestre no uso de geradores de POGramas, frameworks e todas as artimanhas necessárias pra criar um calhamaço de POG que pareça resolver o problema proposto. E o projeto gerado por este profissional, apesar de impressionar à primeira vista, costuma apodrecer mais rápido que que fruta em mochila de POGramador.

O Arquiteto MacGyver costuma ter um relacionamento dúbio com a equipe, ora atuando com fonte de inspiração para ideias pseudodisruptivas, ora atuando como fonte de inspiração para impropérios capazes de fazer o próprio Moonwalker de Curupira1 corar de vergonha.



6.4 Gerente Sem Noção

Um time POG não estaria completo sem um Gerente Sem Noção. Figura frequente no desenvolvimento de software, o Gerente Sem Noção é aquele gerente que tem tanto conhecimento da produção de software quanto um incel possui sobre sexo.

Esse gerente costuma atormentar a vida da equipe questionando prazos dados pelos programadores, dando prazos completamente irreais aos clientes, passando tarefas inúteis, fazendo as perguntas mais imbecis nos momentos mais inapropriados e tomando decisões técnicas sem o mínimo de fundamento.

Um Gerente Sem Noção, mesmo não digitando uma linha de código sequer, tem um poder gambiarrizante tão alto que é capaz de transformar uma equipe bem qualificada nas técnicas tradicionais (ou modernas) em uma turba desgovernada capaz de revogar, por acidente, a própria Lei da Gravidade.

Em nossa supracitada sopa de desgraça, tão necessária para nutrir nossas POGs, o Gerente Sem Noção é a pimenta.



6.5 Cliente Corrosivo

Se o Gerente sem Noção é a pimenta, o Cliente Corrosivo é o “tompero” [@Jacquin2019].

O Cliente Corrosivo é a entidade que paga por duas coisas: pelo projeto e pelo direito de estragar o projeto. Ele não apenas se coloca como financiador dessa empreitada, mas como um dos principais obstáculos que devem ser superados.

Dentre os comportamentos nocivos deste cliente, temos:


	Interferir, a todo momento, nas tarefas da equipe, passando por cima da autoridade de todos os idiotas que ele está pagando para comandar essa equipe.

	Fazer solicitações impossíveis e pedidos impraticáveis, a essa mesma equipe, ignorando o aviso dos imbecis que ele contratou para avisá-lo sobre solicitações impossíveis e pedidos impraticáveis.

	Esquecer acordos que ele mesmo aceitou e quebrar contratos que ele mesmo assinou.

	Ignorar parâmetros de completude de tarefas que ele mesmo estabeleceu.

	Voltar atrás na palavra que ele mesmo deu.

	Pedir mudanças fora do escopo que ele mesmo aprovou.

	Ignorar o fato de que a equipe que ele contratou é formada de criaturas da espécie humana e não de robôs. Essas criaturas têm necessidades importantes que devem ser plenamente satisfeitas, tais como sono, fome, sede, cansaço e desejo homicida de atirar pedras de granito, que pesam 5kg cada, na cabeça do cliente.



O Cliente Corrosivo tem esse nome porque sua atuação no projeto é semelhante a de um ácido, corroendo até mesmo o melhor dos materiais e transformando uma boa equipe em aterro sanitário de boas ideias, capaz de produzir o mais puro suco de chorume em forma de código POG.



6.6 Usuário Abrasivo

Ainda que o cliente não seja corrosivo, seu séquito de lacaios, os usuários abrasivos, podem contribuir para criar um ambiente propício ao aparecimento de POG.

O Usuário Abrasivo é aquele usuário que não tem poder de decisão sobre o andamento do projeto, mas tem o poder de atravancar e atrapalhar o desenvolvimento deste. Algumas vezes ele age como se sua vida estivesse ameaçada por este projeto (e às vezes ele está certo). Em outras, ele simplesmente se recusa a fazer o que tem de fazer.

Não imposta qual seja o motivo, o Usuário Corrosivo tem o dom de irritar a equipe. Até mesmo uma Equipe Apática pode perder a paciência diante de um Usuário Abrasivo. Sua capacidade de antagonizar membros da equipe é comparável à capacidade que um ocupante do cargo mais alto de uma república tem de fazer merda.

Ele simplesmente sabota o projeto, não testa o que deve testar, não fornece informações para os analistas, não colabora com ideias e insigths (a não ser que sejam extremamente odiosas e custosas) e sempre que pode, reclama de tudo o que é feito. Se a equipe lhe der uma barra de ouro, o Usuário Corrosivo reclama que tem mais peso pra levar pra casa.

Esse usuário causa pequenos danos, no decorrer do projeto, que vão se acumulando. Análogo ao Efeito Borboleta, o Usuário Abrasivo causa o Efeito Asa de Urubu, que causa o mesmo furacão, só que com o cheiro podre e carnicento do miasma que é a sua alma. Pra satisfazer o desejo de sangue deste usuário, os POGramadores recorrem a toda ordem de sortilégios e mandingas disponíveis no seu cinto de utilidades de POG.

Obviamente que isso vira um círculo vicioso, onde mais pogs são necessárias pra aplacar a sede de sangue, que só aumenta devido às pogs já usadas, numa retroalimentação de energias negativas que faz qualquer adepto do namastê emplacar um sonoro sifudê.



6.7 Intrometido Inepto

Pra completar a corte enviada pelo Estraga Suruba2, temos o Intrometido Inepto. Essa figura aparece em diversas fases do projeto com uma única missão: se intrometer onde não é chamado para fornecer uma opinião não solicitada sobre um assunto que não domina.

O Intrometido Inepto costuma colaborar na criação de pogs ao colocar ideias perniciosas nas mentes de tomadores de decisões despreparados para lidar com essa influência danosa.

É esse filho do Chinelo Emborcado3 que planta, na mente fértil do Gerente Sem Noção, a ideia de que seria muito útil se o sistema financeiro tivesse uma funcionalidade de geração aleatória de nomes do capeta no campo de nomes dos fornecedores.

É esse Torresmo de Prepúcio4 que, num ato de covardia e prazer pelo sofrimento alheio, convence o cliente de que o sistema precisa ter a capacidade de enviar emails através de pombos-correio, caso a internet caia.

É esse Tempero de Miojo5 que diz para o Gerente Sem Noção que a equipe vai render muito mais se for marcada uma palestra motivacional com coach quântico numa sexta feira, às 18h30. E sem lanche, pois a fome é uma motivadora muito fote.

Se você identificar um Intrometido Inepto junto aos tomadores de decisão associados ao seu projeto, a atitude mais correta e humana é capturar e entregar para o Ibama. Se isso não for possível, reze. Se for ateu, essa é uma boa hora pra adotar uma religião.



6.8 Dobrador de problemas

Ao tratarmos da dimensão humana, não poderíamos deixar de mencionar um papel que pode ser assumido por qualquer um dos membros dessa pequena seita de invocação de calamidades digitais: o Dobrador de Problemas.

Não se sabe qual fenômeno causa essa transfiguração na criatura humana. O que se sabe é que, em qualquer momento de um projeto, o espírito do Dobrador de Problemas pode encarnar em seu avatar (que poder ser qualquer um, mas quase sempre é o gerente) e esse passa controlar os problemas da equipe com toda destreza e graciosidade do Nariz Fora da Máscara6 tentando causar um pequeno apocalipse.

Tal qual um Jesus da Desgracença, o Dobrador de Problemas pega um pequeno empecilho pra resolver e, a partir desse minúsculo pedacinho de caos, ele gera um tufão de esmerdalhamento que multiplica e joga problemas pra todos os lados, fazendo o efeito Asa de Urubu parecer um folheto de igreja que mostra uma criança loira montando um leão vegano.

Você dá um problema pra essa criatura desatinada resolver e, de repente, ela invocou um Tiamat de 37 cabeças. Era pra fazer um café. Uma mísera garrafa de café. Como isso gerou um prejuízo de 3 bilhões, para o cliente, 3 mil empregos perdidos (nenhum de POGramador) e uma crise diplomática com o Canadá? COMO INFERNO ALGUÉM CONSEGUE ARRUMAR UMA BRIGA COM O CANADÁ?

Ninguém sabe. Mas agora o gerente exige a contratação de mais 18 POGramadores e nosso espírito de luz (de cabaré) pode retornar ao seu limbo, feliz pelos empregos criados e projetos extendidos, e aguardar a próxima vez que será sumonado.

Quem será o próximo a ser possuído?7



6.9 Notas








1. Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemológico, do Farofa Doce, do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17… Para mais nomes, visite Invocador de Nomes do Capeta



2. Estraga Suruba é outro nome do capeta. Ver nota 1.



3. Chinelo Emborcado é outro nome do capeta. Ver nota 1.



4. Torresmo de Prepúcio é outro nome do capeta. Ver nota 1.



5. Tempero de Miojo é outro nome do capeta. Ver nota 1.



6. Nariz Fora da Máscara é outro nome do capeta. Ver nota 1.



7. Certeza que é o gerente. É sempre o gerente.





7 Dimensão Tecnológica

Uma outra dimensão que afeta constantemente nossos projetos, adubando o jardim da desgracença para que a POG possa germinar com todo vigor, é a Dimensão Tecnológica.

Ainda que todos os seres humanos envolvidos tenham seus espíritos imaculados e imbuídos das melhores intenções, existem os Requisitos da POG ligados à fatores tecnológicos. Esses Requisitos, quando satisfeitos, levam a tecnologia, antes usada para solucionar problemas, a se tornar uma fonte saudável de novos problemas mantenedores de emprego.

Temos, portanto, as seguintes aparições que, quando presentes, trazem à equipe o terror necessário para que a pog possa ser devidamente conjurada:


7.1 Tecnologia Inadequada

Ah, a beleza da tecnologia. Milhares de anos de esforço científico, milhões de horas de trabalho aplicadas com o intuito de facilitar o trabalho humano. O ápice do conhecimento encarnado em forma de técnica. E o que a equipe escolhe para cortar um pão? Um martelo.

Isso mesmo. Um martelo. Um maldito martelo!


Para quem só sabe usar martelo, todo problema é prego.

– Jesus, ensinando POGramação ao Thor



A escolha de tecnologias inadequadas é um prato cheio pra quem quer se fartar no jantar da POG. Com a tecnologia errada em mãos, a equipe é obrigada a invocar todo tipo de pog pra resolver os problemas para os quais foram contratados. E, logo em seguida, eles precisam usar mais pogs para resolver os novos problemas que as pogs usadas criarão, num maravilhoso círculo vicioso que logo se torna o furacão do esmerdalhamento!

A decisão sobre o uso de uma tecnologia inadequada pode ter muitos culpados. Pode ser uma sugestão do Intrometido Inepto, pode ser uma decisão do Gerente Sem Noção, pode ser uma escolha da Equipe Apática… Qualquer um pode ser culpado por esta decisão, o que torna esse requisito um dos mais democráticos e fáceis de ser atingido!

Quando os culpados estão na equipe, isso pode ser um sintoma de outro requisito que, quase sempre, aparece junto com a escolha de uma tecnologia inadequada…



7.2 Desconhecimento Técnico

Porque contratar profissionais qualificados se contratar uns estagiários e colocar um Arquiteto MacGyver pra ser babá deles? Talvez um ou dois Profissionais Superestimados? Porque não acrescentar logo um babuíno raivoso, com um dildo de borracha de 78 cm que ele usa como porrete?

Aqui temos um Requisito da POG que faz com que a POG praticamente surja sozinha. A falta de conhecimento técnico por parte de membros da equipe cria um ambiente onde a pog cresce livre e faceira.

Esse tipo de equipe é bastante comum e é a semente pra quase todos os outros males que aparecem associados à POG. Uma equipe sem o devido conhecimento acaba, praticamente sozinha, criando uma reação em cadeia que gera vários dos outros Requisitos da POG. Essa equipe se torna o tolete inicial de uma gigantesca avalanche fecal que pode varrer qualquer projeto para os círculos mais profundos do inferno.



7.3 Obsolescência Adquirida

Mesmo um trabalho bem feito pode acabar apodrecendo com o tempo. E é nesse momento que o vendedor, tal qual o Explica Piada de Encruzilhada1, surge para convencer seu gerente de que o software dele vai ajudar a aumentar a produtividade da equipe. E é assim a equipe acaba tendo que usar aquele servidor de aplicações que foi renegado pelo próprio criador por ser complexo demais.

Mas esse não é a única forma de você acabar tendo que trabalhar com uma carroça digital. O problema da Obsolescência Adquirida é que ela vai chegar e a questão não é eliminá-la, mas sim com quanto dela você consegue conviver.

Aquele computador encarroçado que você é obrigado a usar no trabalho já foi uma Ferrari! O software de registro de ocorrências feito em applets Java, 1999, e que ainda é usado por essa grande companhia telefônica, já foi uma obra prima da engenharia humana. O problema é que o tempo passa e e o ser humano quer lidar e inventar NOVOS problemas. Ter que lidar com os antigos é chato.

Mas é aqui, amigo POGramador, que uma oportunidade surge: a obsolescência adquirida cria uma oportunidade rara para o desenvolvimento, e até mesmo masterização, de suas habilidades de POGramação.

Um ambiente com infra-estrutura tão estável e madura oferece uma chance única de testar, por longos períodos de tempo, suas pogs. E quando dizemos “longos”, estamos falando longos mesmos! Existem pogs rodando há mais de 50 anos no setor bancário!

Você pode criar seu próprio Ano Bissexto e ser imortalizado!



7.4 Rigidez Arquitetural

Flexibilidade. Nunca um conceito foi tão deturpado pela academia e pelos ditos defensores de boas práticas. Em nome da “flexibilidade”, eles maculam nosso código com práticas que levam nossos softwares a se adaptarem a várias situações SEM que nossa intervenção seja necessária.

Olhe para o colega ao seu lado. Se ele faz uso desse tipo de técnica, ele é um traidor. Não há outra palavra para designar esse filho do Agonia de Domingo2, esse rebento do Equação de Segundo Grau3, esse capacho do Corote Azul4.

Flexibilidade real é a capacidade que seu software tem de ser usado para outras situações, mas com SUA intervenção. Num ambiente de flexibilidade saudável, você pode pegar seu sistema de controle de vídeo locadora5 e, com SUAS adaptações (obviamente em formato de pogs), transformar essa pequena pérola da engenharia humana em um sistema de controle hospitalar! Assim, você transforma em oportunidade o produto da Obsolescência Adquirida e ainda se utiliza do princípio da Enjambração para economizar tempo e lucrar!

Portanto, ao criar seus sistemas, torne a arquitetura dele o mais rígida que conseguir, para impedir outros de roubarem seu trabalho, mas flexível o suficiente para que você possa adaptar esse sistema a uma situação completamente adversa da original, com mais gambiarras! Lembre-se: quanto mais gambiarra, mais emprego!



7.5 Projeto Malamanhado

Início de projeto. A equipe se reúne (já começou errado!) para discutir a arquitetura e sempre tem um Arquiteto MacGyver que, instigado pelo Batizado no Chorume6, resolve trazer à pauta as “melhores práticas do mercado”.

Esse era o momento em que o regimento da empresa deveria deixar claro que permite o uso de violência (CADÊ O MALDITO BABUÍNO???).

Esse arquiteto traíra está criando uma armadilha com o único intuito de alavancar a própria carreira e mudar de empresa. E, enquanto ele sai pra se esbaldar com sua nova proposta salarial indecente, larga essa Equipe Apática com um projeto super bem estruturado… que ninguém sabe mexer.

O resultado é que os membros da equipe vão mutilando o projeto e enxertando pogs como se não houvesse amanhã. Isso vai criando um Frankenstein de código que, tal qual o citado monstro, se volta contra a sua equipe, aumentando exponencialmente a quantidade de gambiarras necessárias para manter o sistema funcionando.

Um Projeto Malamanhado tem o seu valor. Ele é democrático. Todo mundo consegue pogar nele, desde o Programador Supervalorizado frequentador de reuniões sexuais de segurança duvidosa até aquele estagiário que tem tanta concentração alcoólica no sangue que poderia entrar em combustão espontânea!

O problema é que sem um guia adequado, o projeto que parecia um pedaço de mal caminho se transforma logo em uma auto estrada da perdição!



7.6 Notas








1. Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemológico, do Farofa Doce, do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17… Para mais nomes, visite Invocador de Nomes do Capeta



2. Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemológico, do Farofa Doce, do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17… Para mais nomes, visite Invocador de Nomes do Capeta



3. Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemológico, do Farofa Doce, do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17… Para mais nomes, visite Invocador de Nomes do Capeta



4. Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemológico, do Farofa Doce, do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17… Para mais nomes, visite Invocador de Nomes do Capeta



5. Se você sabe o que esse termo significa, você é grupo de risco do Coronavírus. Fique me casa e laves as mãos.



6. Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemológico, do Farofa Doce, do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17… Para mais nomes, visite Invocador de Nomes do Capeta





8 Dimensão Estrutural

Temos uma equipe de anjos imaculados criados pelo próprio Linus Torvalds, adeptos da melhores práticas e munidos das mais belas tecnologias.

É possível que, frente à tamanha santidade, ainda seja possível que a POG encontre seu caminho para a luz?

Sim, é. Nenhuma santidade resiste à problemas da Dimensão Estrutural.


8.0.1 Cafeína Ausente

O santo néctar dos deuses, o combustível da invocação codística, o puro sumo da estimulação neuronal geradora de código tem um nome: cafeína.

Este estimulante saudável (principalmente se tomado em doses que fariam um elefante voar propelido pela tromba) é o combustível que nosso cérebro usa para transformar ideias em código. Esqueça tudo o que já te disseram sobre glicose, ATP, PQP ou VSF. É a cafeína que vai virar código.

A cafeína assume várias formas. As mais comuns são o café (a mais tradicional), o chá (quase ninguém relevante para o código toma), ou em forma de refrigerante escuro que não mencionarei o nome porque não esta me pagando (#paganois).

E o que acontece quando um Gerente Sem Noção resolve “economizar” no café?

A POG vem. E vem com força.

Cérebros descafeinados tendem a procurar (no Google) a solução mais fácil (Starckoverflow) para um problema. E acabam adotando a primeira pog que encontram.

Além disso, por estarem com seus pensamentos se movendo no mesmo ritmo dos civis, os POGramadores se tornam mais suscetíveis aos Intrometidos Ineptos, que, curiosamente, aparecem com mais frequência nesses momentos.

Curiosamente, a cafeína em excesso (conceito cientificamente controverso, já que é cientificamente comprovado que não existe o conceito de “cafeína em excesso”) também acaba por acelerar seus POGramadores e aumentar a taxa de geração de pogs deles.



8.0.2 Trono da Tortura

Trabalhar já é uma atividade deprimente. Quem, em sã consciência, diz que ama trabalhar quando poderia estar fazendo atividades mais lúdicas, como cuidar de uma fazenda virtual, quebrar pedras coloridas ou combater demônios, em pleno inferno, com uma metralhadora do tamanho de seu complexo de inferioridade?

Mas nós precisamos trabalhar. Vivemos no capitalismo e, a não ser que você seja um privilegiado que não precisa pagar suas próprias contas, é necessário fazer programa por dinheiro.

O trabalho do POGramador é resolver problemas. E, pra cada problema resolvido, ele precisa criar pelo menos mais dois. É parte do jogo. Mas pessoas confortáveis tendem a resolver mais problemas do que criam. Isso é ruim para os negócios.

Para resolver este problema (e criar mais), o Gerente Sem Noção inteligente sabe que sacrifícios devem ser feitos. No caso, o sacrifício da coluna do POGramador. É por isso que sua cadeira, essa onde você está sentado agora, é um lixo.

Esse instrumento de tortura, abandonado pela santa inquisição por ser demasiado desumano, é a primeira escolha de uma empresa que deseja manter alta taxa de geração pogacional.

Observe só os gamers. Observe eles, em suas cadeiras estilosas e confortáveis, algumas equipadas até com vão centrar para instalação de um shit bucket (não procure no Google). O que eles fazem o dia inteiro? RESOLVEM PROBLEMAS!

Eles salvam planetas de tiranos, ajudam encanadores a resgatar princesas das mãos de calangos anabolizados, vencem, pela milésima vez, a guerra contras os nazistas (coisa que nós, humanos normais, ainda falhamos em fazer) e ainda encontram tempo para roubar, matar, espancar pessoas e atropelar velhinhas inocentes em cidades fictícias. Tudo isso sentado!

É óbvio, portanto, uma equipe detentora de um aparato portador de busanfas de alta qualidade é incapaz de manter o fluxo problemático tão necessário à manutenção da lucratividade corporativa.

Boas cadeiras só servem pra tornar POGramadores em programadores. E não é isso que nós queremos, certo?

Se não bastasse tudo isso, cada POGramador com problema na coluna é um consumidor voraz de medicamentos e, em casos mais graves, consultas médicas e a profissionais de procedência duvidosa. Imagine toda essa gente desempregada e desamparada, apenas porque alguém resolveu que quer se sentar confortavelmente.

Cadeira ruim é dinheiro pra todos!



8.0.3 Automação Capenga

Se tem uma coisa que ajuda a acelerar o trabalho, é a automação. Cada tarefa automatizada é trabalho a menos pra equipe. E o que isso significa? Que você vai sair mais cedo? Que vai ter folga? Que vai ter mais dinheiro no bolso?

Não. Significa que você terá menos trabalho. E menos trabalho é igual a menos emprego.

Uma automação bem feita, além de diminuir o seu trabalho, diminui sensivelmente a taxa de erros, gerados pela equipe devido à execução repetida de tarefas complexas. E isso é muito ruim, pois elimina uma importante fonte geradora de pogs espontâneos.

Como resolver isso? Não automatizando, óbvio. E, se for necessário automatizar, faça com que a execução dessa automação seja tão ou mais complexa que o próprio processo que foi automatizado.

Dessa forma, ao executar um processo capengamente automatizado, podemos continuar inserindo, aleatoriamente, erros no ambiente, de forma a estimular a criação de pogs para a resolução desses erros.



8.0.4 Poluição Sonora

De todos os requisitos necessários para a implementação de um ambiente saudável e propício a geração de pogs, a Poluição Sonora costuma ser um dos mais subestimados.

É prática recorrente dos POGramadores o uso de fones de ouvidos. Muitos alegam que isso ajuda na concentração, mas a verdade é que eles estão apenas utilizando uma forma de manter outros seres humanos à distância. O fone de ouvido é o isolamento social antes de ser modinha.

Acontece que POGramadores, isolados de outros POGramadores, perdem muito do seu potencial de gerar POGs! Além disso, o uso da música como isolante acústico ajuda o POGramador a entrar num estado de fluxo mental que pode fazer com que ele RESOLVA mais problemas do que consegue CRIAR, que é a função primordial dele.

Dessa forma, faz-se necessário criar um ambiente em que o som da barafunda à sua volta consiga penetrar a barreira de proteção dada pelos fones1.

Para atingir tão nobre objetivo, podemos usar de diversos artifícios, alguns permanentes e outros temporários. Lembre-se que a aleatoriedade do barulho ajuda a atrair a atenção do POGramador.

Podemos fazer desde reuniões ruidosas, perto do ambiente de trabalho, até colocar um som ambiente com trilha sonora qualidade duvidosa em um volume agressivamente alto.

Podemos implantar um funcionário, com o tom vocal de um feirante de novela da Globo, próximo à equipe. E podemos atingir um combo se esse funcionário for dotado de um telefone que toca mais que celular vazado em rede social.

Telefones, aliás, pode ser uma arma extremamente eficiente para esse fim. Dê vários telefones para a equipe. Se possível, um pra cada POGramador. Agora, dê esses números para os clientes. Veja a POG fluir de seu projeto como a água flui nas cataratas do Iguaçu.



8.0.5 Trânsito Sanitário

Apesar do que muitos empresários acreditam, os membros de uma equipe produtora de POGramas pertencem à espécie humana. O número de erros que eles cometem é a maior prova disso. Nem precisamos olhar o DNA.

Como seres humanos, seus corpos possuem necessidades que devem ser adequadamente satisfeitas para que continuem funcionando. Tá, não precisa ser tão adequado assim. Se garantirmos o mínimo de alimentação, hidratação, excreção, sono, ingestão de cafeína e alimentação de ego com infantilidade no ambiente de trabalho, o POGramador será plenamente capaz de exercer as suas funções geradoras de lucro.

Dessas necessidades, devemos destacar a influência de uma sobre a produção individual de pogs: a necessidade de defecar.

Desde a revolução industrial que o capitalismo tenta, a todo custo, controlar a necessidade que indivíduo tem de colocar pra fora o resto de sua alimentação. Tempo é dinheiro e funcionário no banheiro está ganhando pra defecar. Isso não é desejável.

Contudo, um funcionário impedido de usar o banheiro pode se tornar um problema pra empresa. Uma pessoa forçadamente entupida é incapaz de produzir qualquer coisa que seja, até mesmo a mais sinistra POG. Além disso, uma empresa que venha a aderir a tais práticas pode ser mal vista pelo público, seja por uma denúncia às autoridades competentes, seja por um episódio se surto simiano em um programador de meia idade, que, tomado pelo ódio, passa a cagar na mão e a atirar merda nos clientes, funcionários e patrões. Isso não seria legal. Viralizaria em site de vídeo? Sim. Mas não seria legal.

Como conciliar o atendimento a uma necessidade tão básica do ser humano com as necessidades de geração de POG da equipe?

Use estrategicamente a localização do sanitário!

Ou o banheiro fica próximo a onde as pessoas trabalham, que é para elas se inspirarem no cheiro de merda, ou fica londe de onde trabalham, para que a preguiça as faça demorar mais pra ir ao banheiro, o que gera uma enorme pressão fecal que as estimule a fazer mais merdas no código.

Seja inspiração interna ou externa, a posição do banheiro pode potencializar o nível de produção de sua equipe!









1. Atenção: JAMAIS tire os fones de um POGramador. Isso desabilita qualquer parte do seu cérebro que controle a violência e torna o POGramador passível de comportamento bestial, semelhante a um felino acuado por alguém vestindo uma fantasia de gato de loja de fantasias baratas.





9 Dimensão Processual

O capitalismo (conhecido carinhosamente como Capetalismo) é uma beleza. Lá está a equipe engajada e preparada, com as melhores tecnologias do mercado, num escritório tão bem feito que dá vontade de adicionar o termo “home office” a alguma lista da antiga Inquisição… Mas o capetalismo precisa da POG e alguém tem que fazer alguma coisa.

É nesse momento que entra em cena a equipe de processos da empresa!

A Dimensão Processual engloba os requisitos que são satisfeitos e documentados através dos processos escolhidos pela empresa por puro sadismo organizacional.

Enquanto a Dimensão Humana dá o empurrão inicial e a Dimensão Tecnológica fornece as ferramentas da desgracença, é o processo que oficializa o caos com logo da empresa, ata de reunião e plano de ação em PowerPoint.

Em resumo: processo ruim não só permite POG, ele industrializa POG.


9.0.1 Prazos suicidas

Em qualquer empresa humanamente decente, prazos são definidos de acordo com um conjunto de fatores que tenta minimizar ao máximo as incertezas:


	Estatísticas dos projetos anteriores

	Custos

	Estimativa da equipe sobre tempo e complexidade das tarefas

	Velocidade da equipe

	Técnicas de engenharia para cálculo de prazo



Mas nós sabemos que a diminuição das incertezas leva à diminuição do surgimento de POGs, certo?

Nesse contexto, devemos manter um certo nível de incerteza no ar. Contudo, ao se definir um prazo para as tarefas, devemos optar pelo prazo mais longo?

JAMAIS!


[image: Prazo suicida {caption: Diagrama meticulosamente criado para ilustrar o tamanho ideal do prazo}]
Prazo suicida {caption: Diagrama meticulosamente criado para ilustrar o tamanho ideal do prazo}

Como podemos ver no diagrama acima, qualquer prazo que a equipe aceite será devidamente deserdiçado com progcrastinação (ou pior, estudando!), pânico e choro! Somente na pequena porção final do prazo é que a equipe vai se dedicar à entrega, trabalhando ferozmente e gerando POGs como se não houvesse amanhã.

Como saber exatamente quão curto deve ser o prazo? É simples:


	Pergunte o prazo pra equipe

	Divida esse prazo por dois.

	Repita o passo 2 até observar a vida se esvaindo dos membros da equipe. Se ouvir dentes rangendo, gemidos de dor e perceber claramente a alma tentando sair do corpo, você está no caminho certo.



O Prazo Suicida é um requisito que deve ser levado em consideração em qualquer projeto POG. Afinal, se a equipe não estiver sob pressão, não vai entregar nada!


9.0.1.1 Exemplo didático: requisito simples, processo caótico

Demanda original:


“Só precisamos adicionar um campo de telefone no cadastro.”



Processo POG padrão:


	Vendas promete para hoje.

	Produto manda áudio no WhatsApp com “regra principal”.

	Cliente muda o formato no meio da implementação.

	QA testa uma versão antiga da regra.

	Produção recebe hotfix “temporário definitivo”.



Resultado final: não existe mais “campo de telefone”. Existe uma entidade ontológica chamada ContatoComercialPrioritario, com três máscaras, duas validações contraditórias e uma trigger triste no banco.




9.0.2 Aparecimento caótico de requisitos

No mundo ideal, requisito nasce, é refinado, validado, implementado, testado e entregue.

No mundo POG, requisito aparece assim:


	em reunião sem ata

	em áudio com eco de ventilador

	em print de conversa sem contexto

	em “só mais esse ajuste” no fim da tarde



Esse fenômeno é conhecido como Aparecimento Caótico de Requisitos, onde a origem do requisito é sempre nebulosa e a responsabilidade é sempre coletiva (ou seja, de ninguém).

O efeito colateral mais poderoso desse cenário é a mutação semântica:


	“opcional” vira “obrigatório”

	“depois” vira “agora”

	“MVP” vira “produto completo”

	“ajuste visual” vira “reestruturação arquitetural”



Quando requisitos surgem sem trilha clara, o time passa mais tempo discutindo o que precisa ser feito do que fazendo. E quando finalmente faz, implementa metade da regra certa em cima da premissa errada, com ótima performance e total inutilidade.



9.0.3 Upfront design (BDUF – geralmente associado ao modelo Waterfall/Cascata)

O Big Design Up Front não é ruim por natureza. O problema começa quando ele vira religião.

No modo POG, BDUF funciona assim:


	três semanas desenhando diagramas

	zero feedback de usuário real

	premissas rígidas baseadas em “achismo premium”

	implementação correndo atrás do documento, não do problema



Quando a realidade bate, o desenho já está velho. Em vez de adaptar o design, adapta-se o sistema na marretada para caber no desenho. Nasce então a clássica arquitetura de museu: bonita no PDF, sofrível em produção.


9.0.3.1 Exemplo didático: fluxograma perfeito, sistema inútil

Um fluxo de aprovação é desenhado com cinco estados impecáveis:


	rascunho

	em_analise

	aprovado

	revisao

	publicado



No primeiro mês, surge a necessidade de “aprovar com ressalva”. Como não existe estado intermediário e ninguém quer mexer no modelo “fechado”, inventa-se:


	aprovado = true

	temRessalva = true

	ressalvaAprovada = false



Parabéns: você transformou uma máquina de estados em uma roleta russa booleana.




9.0.4 Desenvolvimento não iterativo

Desenvolvimento não iterativo é aquele onde se planeja tudo no início e só se descobre os problemas no final, quando já é tarde demais para qualquer dignidade.

Os sintomas são clássicos:


	entregas longas sem validação intermediária

	demonstração para usuário apenas no “grande dia”

	descobertas críticas já no fim do prazo

	correção por remendo em vez de aprendizado por ciclo



Sem iteração, não existe ajuste fino. Só existe correção traumática.

No contexto POG, isso é excelente, porque cada erro descoberto tarde custa mais e exige gambiarra mais criativa.



9.0.5 Projeto de churrasco

Toda empresa tem aquele projeto que “começou pequeno”. Era para ser uma landing page. Depois virou painel. Depois virou módulo financeiro. Depois virou integração com legado de 2003.

Isso é o Projeto de Churrasco:


	cada pessoa traz um ingrediente

	ninguém combina receita

	no final alguém pergunta onde está o carvão



No código, isso se manifesta em:


	nomenclatura inconsistente

	camadas misturadas

	regra de negócio no front, no back e no script de banco

	decisões importantes espalhadas em comentários de PR antigo



É um modelo extremamente eficiente para gerar a sensação de progresso com risco acumulado.



9.0.6 Convivência com a Codinga

Na comunicação verbal: catinga + código = codinga.

Codinga é o estado em que a equipe se acostuma tanto com decisões ruins que passa a tratá-las como “o jeito que funciona aqui”.

Frases típicas de ambiente codinga:


	“Não mexe nisso que quebra.”

	“Sempre foi assim.”

	“Depois a gente refatora.”

	“Tá feio, mas funciona.”



Convivência prolongada com codinga causa:


	baixa capacidade de reação

	perda de senso crítico técnico

	normalização da gambiarra como padrão arquitetural



Em estágio avançado, o time para de discutir qualidade e passa a discutir só sobrevivência operacional.



9.0.7 Débito técnico

Débito técnico é o imposto da pressa. Ele pode ser estratégico, controlado e pago depois. Mas no ambiente POG ele é usado como cartão de crédito sem limite, sem fatura e sem vergonha.


	Débito técnico como medida de POG

	Imprudente intencional: “Sabemos do problemas mas não vamos resolver!”

	Imprudente não intencional: “Trabalhar com uma nova linguagem de programação”

	Consciente intencional: “Temos um prazo X, precisamos entregar com esse problemas, depois corrigimos”

	Consciente não intencional: “Agora que entregamos o projeto sabemos como deveríamos ter feito.”




	É inevitável, ela sempre vai existir

	Se não for pago, o débito tende a aumentar com o tempo

	É “subjetivo”




9.0.7.1 Exemplo didático: dívida pequena que vira financiamento habitacional

Semana 1:


	“Vamos só duplicar esse método para ganhar tempo.”



Semana 3:


	cinco cópias divergentes do mesmo método

	duas regras conflitantes

	um bug em cada variante



Mês 3:


	qualquer ajuste exige cirurgia em múltiplos arquivos

	ninguém sabe qual versão é a correta

	prazo de correção dobra

	equipe culpa “complexidade do domínio”



Não era complexidade do domínio. Era dívida capitalizada.




9.0.8 Processo Go Horse institucionalizado

Há empresas em que o Go Horse deixa de ser exceção e vira método oficial, com três pilares:


	pressa como valor

	ausência de critério de aceite

	celebração do herói que apaga incêndio



Nesses ambientes, qualidade é tratada como obstáculo, teste vira luxo e documentação vira literatura de ficção.

No curto prazo parece funcionar. No médio prazo custa caro. No longo prazo só sobrevive quem domina a arte da gambiarra arqueológica.



9.1 Como reduzir a Dimensão Processual sem matar a produtividade

Não precisa virar monastério da engenharia para reduzir POG processual. Alguns ajustes simples já derrubam bastante a taxa de caos:


	Definir critério mínimo de entrada para requisito (origem, objetivo, regra e impacto).

	Trabalhar com entregas curtas e validação frequente.

	Impedir mudança de escopo sem registrar decisão.

	Reservar capacidade explícita para pagar débito técnico.

	Proibir promessa externa sem consulta de quem implementa.



Isso não elimina a gambiarra (nem deve, por questões culturais da obra), mas evita que o projeto vire uma seita de sofrimento automatizado.



9.2 Encerramento processual

Processo ruim é aquele que transforma problema simples em ritual corporativo de dor.

Quando a Dimensão Processual está plenamente atendida, a empresa alcança o estado da arte da POGramação: tudo tem rito, tudo tem dono no organograma, e nada funciona direito sem intervenção emergencial.

Se você identificou metade desses sinais no seu ambiente, parabéns: você não trabalha em uma empresa. Você trabalha em uma fábrica de POG com certificação ISO do capeta.





10 Dimensão Temporal

Se a Dimensão Humana é o motor da desgracença e a Dimensão Tecnológica é a oficina da calamidade, a Dimensão Temporal é o relógio amaldiçoado que garante que tudo dê errado no pior instante possível.

Tempo, no mundo ideal, deveria ser usado para planejamento, execução consciente, validação e melhoria contínua. No ambiente POG, tempo é usado para um esporte corporativo muito mais nobre: atropelar o bom senso em velocidade supersônica.

Não importa quão competente seja a equipe. Se o contexto temporal for manipulado com crueldade suficiente, a POG brota com a força de uma samambaia mutante em adubo radioativo.


10.1 O próprio tempo

Existe uma lei universal da POGramação:


Toda tarefa cuja estimativa é minimamente razoável será imediatamente tratada como exagero pessimista por alguém que nunca implementou nada em produção.



A relação da empresa com o tempo costuma seguir três fases:


	O cliente pede algo para “ontem”.

	O gerente negocia e promete para “anteontem”.

	A equipe recebe hoje de manhã com prioridade “máxima absoluta crítica urgente top”.



Com isso, o tempo deixa de ser recurso de engenharia e vira instrumento de tortura processual.

Um prazo saudável permite pensar. E pensar reduz POG. Portanto, para a prosperidade do caos, pensar deve ser desencorajado por meio de:


	interrupções constantes

	replanejamento diário sem critério

	alteração de prioridade no meio da execução

	pressa travestida de “agilidade”



Quanto menor o tempo real de execução e maior o tempo gasto explicando por que não há tempo, maior a taxa de geração de gambiarras por sprint.


10.1.1 Dilatação cronológica gerencial

Na física clássica, o tempo passa de forma uniforme. Na gestão de projetos POG, ele se deforma conforme o cargo de quem está falando.


	Para quem vendeu: “é simples”

	Para quem estima: “é complexo”

	Para quem aprova: “vamos alinhar”

	Para quem implementa: “já devia estar pronto”



Essa distorção produz um fenômeno raro: o prazo quântico. Ele existe e não existe ao mesmo tempo, até que alguém abra o Jira e descubra que venceu ontem.



10.1.2 Progcrastinação reversa

Em equipes comuns, a procrastinação atrasa entrega. Em equipes POG, ela é invertida:


	adia-se entendimento

	adia-se validação

	adia-se teste

	adia-se documentação



Mas não se adia deploy.

O resultado é uma entrega no prazo, um incidente em produção e uma longa discussão sobre “lições aprendidas” que ninguém aplicará no próximo ciclo, porque o próximo ciclo já começou atrasado.




10.2 Os quatro Fs

A Dimensão Temporal atinge seu ápice quando convergem os quatro grandes marcos do caos corporativo. São eles: Fim do expediente, Férias, Feriado e Fim de semana.

Quando um requisito nasce perto de qualquer um desses eventos, o risco POG sobe. Quando nasce perto dos quatro ao mesmo tempo, o capiroto abre champanhe.


10.2.1 Fim do expediente

Nada gera mais criatividade gambiarrística do que uma demanda “rapidinha” às 17h42.

Nesse horário, o POGramador já está com o cérebro em modo de economia de energia, o ônibus mental já saiu da estação e o corpo inteiro exige apenas uma coisa: ir embora.

É exatamente nesse momento que surge a mensagem:


“Consegue só ajustar isso em produção hoje? É pequeno.”



Ajuste pequeno em fim de expediente costuma incluir, em ordem aleatória:


	alteração de regra central

	script manual no banco

	ajuste de configuração sem rollback

	deploy sem teste porque “não deu tempo”



Se der certo, ninguém lembra. Se der errado, a culpa é do deploy noturno. Se der muito errado, agenda-se uma retrospectiva para concluir que “precisamos melhorar comunicação”.



10.2.2 Férias

Férias são essenciais para saúde humana e profundamente perigosas para arquitetura negligenciada.

Quando o detentor do contexto entra de férias, o sistema revela sua verdadeira natureza:


	documentação inexistente

	automações parciais

	decisões críticas escondidas em mensagens antigas

	segredos operacionais guardados em memória RAM humana



A equipe descobre que o módulo X só funciona porque alguém “sempre fazia do jeito certo”. Como esse alguém está na praia, o time improvisa. E improviso sob pressão é a incubadora oficial da POG.

Existe também o subfenômeno férias canceladas por incidente, conhecido como “home office de biquíni traumático”.



10.2.3 Feriado

Feriado não é pausa. É multiplicador de risco temporal.

Toda empresa POG respeita o seguinte ritual:


	deixa para fechar algo importante na véspera

	encontra um problema de última hora

	aplica workaround heroico

	descobre no retorno que o workaround virou regra de negócio



Durante o feriado, o sistema permanece no ar sustentado por fé, logs incompletos e uma equipe de plantão que não participou das decisões originais.

Quando chega terça-feira, abre-se o chamado clássico:


“Após pequenas melhorias, fluxo principal apresenta comportamento inesperado.”



Com tradução simultânea:


“A gambiarra evoluiu sozinha no escuro.”





10.2.4 Fim de semana

Fim de semana é o habitat natural de migração não planejada, hotfix de emergência e manutenção “sem impacto” que impacta tudo.

A justificativa é sempre sedutora:


	“tem menos usuário”

	“se quebrar, dá tempo de arrumar”

	“segunda cedo já estará estável”



Na prática, o que acontece:


	mudanças entram sem revisão adequada

	dependências externas falham

	ninguém com contexto completo está disponível

	segunda-feira começa com guerra civil no Slack



O fim de semana também favorece o mito do herói solitário, aquela criatura que corrige tudo de madrugada e deixa um legado indecifrável para o resto da equipe interpretar na segunda às 9h03.




10.3 Janela de caos combinada

Agora imagine o combo completo:


	sexta-feira

	fim do expediente

	véspera de feriado

	principal mantenedor saindo de férias



Se nesse exato instante alguém disser “é só um ajuste pequeno”, saiba que você não está diante de uma tarefa. Você está diante de um portal dimensional.

A taxa de POG nesse cenário atinge patamares tão elevados que qualquer regra de qualidade vira item decorativo de processo.



10.4 Como manter a POG sob controle (sem virar monge da engenharia)

Não precisamos fingir que o mundo real é perfeito. Sempre haverá pressão de prazo. A questão é reduzir dano.

Alguns antídotos pragmáticos para a Dimensão Temporal:


	Proibir deploy de risco no fim do expediente sem plano de rollback.

	Mapear módulos críticos antes de férias e distribuir contexto.

	Tratar véspera de feriado como janela de congelamento para mudanças perigosas.

	Usar checklists mínimos de release, mesmo em hotfix.

	Registrar decisões rápidas em lugar acessível para o time.



Isso não elimina a POG, mas evita que ela escale para nível apocalíptico.



10.5 Encerramento temporal

A Dimensão Temporal não cria bug sozinha. Ela cria o ambiente em que decisões ruins parecem razoáveis e atalhos arriscados parecem inevitáveis.

Tempo mal gerido é fertilizante da gambiarra: invisível no começo, onipresente no resultado.

E lembre-se da versão POGráfica da regra do escoteiro:


“Sempre deixar o código um pouco pior do que ele estava quando começou a mexer.”



Se isso acontecer perto de qualquer um dos quatro Fs, parabéns. Você não apenas implementou uma POG. Você inaugurou uma era.





11 Príncípios da POG

Depois de entender o que e POG e quais condicoes ambientais favorecem a manifestacao de uma pog, surge a pergunta inevitavel:

Quais sao os valores que guiam um POGramador no campo de batalha?

A resposta esta neste capitulo.

Toda disciplina seria possui principios. A POGramação, como arte ancestral de resolver um problema criando outros tres, nao poderia ser diferente. Aqui temos um conjunto de normas morais, eticas, tecnicas e espirituais que orientam a mente de quem quer trilhar o GLS (Gambi Life Style) com dignidade.

Nao se trata de “boas praticas” no sentido tradicional. Trata-se de boas praticas para manter o caos produtivo.

Cada principio abaixo representa um vetor da desgracenca organizada. Alguns atuam no nivel do codigo. Outros no comportamento da equipe. E alguns atuam diretamente na alma do projeto.


11.1 O conjunto canonico


	Enjambração Criativística Use o código do sistema financeiro para criar o sistema de EAD.


	Reflexão Reprodutória Cópie o código da biblioteca XYZ. Ninguém vai notar.


	Redireção Tangencial A culpa não é minha!


	Insistimento Determinante Compila de novo que dessa vez vai dar certo.


	Onisciência Finita Não precisa fazer curso. Usa o que você já sabe.


	Imperativo Funcional O importante é funcionar!


	Proatividade Egocêntrica Vamos fazer do meu jeito!


	Devaneio Entusiasmado Lady Murphy? Balela! Faz desse jeito que nada vai dar errado.


	Foco Morcegativo Depois eu faço isso!


	Documentação Espartana Comentários são para amadores!


	Economia Linear Menos linhas é sempre melhor!


	Criptocodagem 1337 h4x0r5 dud3 lol


	Abstração Ignorancial Esqueça o tratamento de erros. Depois cuidamos disso.


	Criatividade Diversificativa Se alguém já usou uma solução, faça diferente.


	Simplicidade Indolente Se tá funcionando sem isso, pra que colocar?


	SHIT Sem Habilidade, Improviso Total.


	O Teorema de Namarra Se você não sabe, não se preocupe, muda isso na marra que funciona.






11.2 Como esses principios operam

Esses principios nao sao independentes. Eles trabalham em combinacao, como uma boy band do inferno corporativo.

Um exemplo comum de combo:


	Onisciencia Finita impede aprendizado novo.

	Reflexao Reprodutoria empurra o time para copiar codigo.

	Insistimento Determinante mantem a tentativa ate passar.

	Redirecao Tangencial encerra a discussao com “a culpa e da infra”.



Resultado: entrega “concluida”, debito tecnico fertilizado e backlog de sustentacao fortalecido.



11.3 Principios, Tecnicas e Patterns

No desenho deste livro, os Principios sao o fundamento filosofico da POG.


	Principios definem o mindset.

	Tecnicas mostram o metodo de invocacao.

	Gambi Design Patterns mostram como a invocacao se materializa no codigo.



Sem Principios, a Tecnica vira acidente. Sem Tecnica, o Principle vira palestra motivacional. Sem Pattern, tudo fica no campo da teoria e nenhum POGramador quer isso.



11.4 O compromisso do POGramador

Assumir estes principios e aceitar algumas verdades duras:


	prazo curto nao justifica codigo opaco, mas frequentemente explica

	pressao organizacional molda arquitetura mais do que qualquer livro

	toda decisao rapida sem contexto gera juros no futuro



O POGramador experiente reconhece isso e nao vive em negacao. Ele sabe que a POG existe, que sempre existira, e que a diferenca entre arte e desastre esta no nivel de consciencia com que a gambiarra e aplicada.

Nos proximos capitulos desta secao, cada principio sera visto em detalhes, com exemplos de campo e aplicacao tatico-espiritual.

Respire fundo, abra o editor e prepare seu coracao.

A liturgia da POG comeca agora.





12 Técnicas da POG

Conhecer os principios da POG e importante. Mas principio sem execucao e so frase de caneca corporativa.

Chegou a hora de entrar na oficina onde a pog e realmente sumonada: as Tecnicas da POG.


12.1 O que e uma tecnica POG

Tecnica, no contexto deste livro, e um conjunto de passos repetiveis para atingir um resultado altamente questionavel com eficiencia invejavel.

Em outras palavras: e o “como fazer” da gambiarra.

Uma tecnica POG costuma ter quatro ingredientes:


	pressao de prazo

	contexto incompleto

	decisao de curto prazo

	otimismo injustificado



Se os quatro estiverem presentes, a chance de sucesso imediato e altissima. A chance de manutencao saudavel no futuro, nem tanto.



12.2 Do principio para o teclado

Os Principios da POG definem a mentalidade. As Tecnicas colocam essa mentalidade em movimento.

Exemplo pratico:


	Imperativo Funcional: “o importante e funcionar”.

	Tecnica aplicada: patch incremental direto em producao.

	Resultado: incidente resolvido agora, enigma tecnico para a proxima sprint.



Por isso, esta secao e a ponte entre teoria e destravamento operacional.



12.3 O arsenal tecnico desta secao

Nos capitulos filhos, veremos tecnicas classicas da alta POGramação:


	Zipomatic Versioning Controle de versao artesanal por arquivos ZIP e fe.


	Incremental Patching Debug Depuracao por remendo progressivo ate o erro cansar.


	My Precious Ownership emocional de codigo e centralizacao de contexto.


	Psychoding Pesquisa + copia + ajuste intuitivo + esperanca.


	Monkey Patching Alteracao comportamental em runtime com potencial de caos global.




Cada uma dessas tecnicas existe porque resolve alguma dor real no curto prazo. O problema nao e a existencia da tecnica. O problema e quando ela vira padrao default de engenharia.



12.4 Niveis de maestria

Todo POGramador passa por fases:


	Iniciante: aplica a tecnica por desespero.

	Intermediario: aplica por habito.

	Avancado: aplica com consciencia de trade-off.

	Mestre: sabe quando nao aplicar.



Este livro nao pretende transformar voce em inocente tecnico. Pretende transformar voce em alguem capaz de reconhecer o jogo real e decidir com clareza.



12.5 Como ler esta parte do livro

Para extrair valor maximo, recomendo a leitura com este ritual:


	identifique a tecnica no seu contexto atual

	reconheca por que ela pareceu a melhor opcao no momento

	mapeie o custo escondido

	defina uma estrategia de saida gradual



Esse processo evita dois extremos improdutivos:


	romantizar gambiarra

	demonizar qualquer entrega rapida





12.6 Encerramento da abertura

Tecnica POG e como ferramenta eletrica sem manual: na mao certa, resolve emergencias. Na mao errada, produz faísca, cheiro de queimado e reuniao extraordinaria.

Nos proximos capitulos, vamos abrir a caixa de ferramentas sem filtro, sem hipocrisia e sem fingir que o mundo corporativo e um laboratorio ideal.

Aperte os cintos. Agora comeca a parte pratica da desgracenca.





13 Zipomatic versioning

O Zipomatic Versioning e a arte de fazer controle de versao sem ferramenta de versao. Cada entrega gera um arquivo comprimido com nome criativo, normalmente algo entre Projeto_FINAL.zip e Projeto_FINAL_AGORA_VAI_2.zip.


13.1 Como funciona o ritual


	copia a pasta atual do projeto

	compacta em zip

	coloca data no nome

	joga na pasta compartilhada da equipe

	torce para ninguem sobrescrever nada



Parece simples. E de fato e. O problema e quando duas pessoas alteram o mesmo arquivo no mesmo dia e ninguem sabe qual zip representa o estado correto.



13.2 Exemplo do mundo real

Projeto_2020-10-01.zip
Projeto_2020-10-01_CORRIGIDO.zip
Projeto_2020-10-01_CORRIGIDO_FINAL.zip
Projeto_2020-10-01_CORRIGIDO_FINAL_MESMO.zip

Esse historico nao permite diferenca clara entre versoes. So mostra que alguem sofreu.



13.3 Sinais de que o Zipomatic dominou


	equipe trocando codigo por e-mail ou pendrive

	pasta de rede com dezenas de zips sem dono claro

	merge manual na base do copiar/colar

	rollback feito por tentativa e erro



Quando o processo de release depende de memoria humana, o desastre ja e questao de agenda.



13.4 Por que a tecnica surge


	ambiente sem cultura de versionamento

	receio de aprender ferramenta nova

	legado antigo mantido por poucas pessoas

	falsa sensacao de seguranca: “zip e backup”



Backup e versionamento nao sao a mesma coisa. Backup protege contra perda fisica. Versionamento protege contra perda de contexto.



13.5 Exemplo didatico de diferenca


13.5.1 Zipomatic


	Joana altera PagamentoService.java

	Carlos altera PagamentoService.java

	ambos geram zip

	alguem extrai o zip “mais novo” e perde metade das mudancas





13.5.2 Versionamento real


	cada alteracao vira commit

	conflitos aparecem explicitamente

	historico mostra quem mudou, quando e por que

	e possivel voltar exatamente para ponto estavel






13.6 Impacto tecnico e humano


	retrabalho constante

	bugs regressivos por sobrescrita

	auditoria impossivel

	onboarding doloroso (o novato precisa “adivinhar” fluxo)



Zipomatic parece economizar tempo no inicio, mas consome energia brutal em manutencao.



13.7 Como sair sem trauma


	adotar repositorio central para o projeto atual

	manter zips apenas como backup historico temporario

	criar fluxo minimo: branch, commit com mensagem, merge revisado

	treinar equipe no essencial (nao precisa virar especialista de imediato)



Migracao gradual funciona melhor que guerra santa de ferramenta.



13.8 Resumo POG

Zipomatic Versioning e romantico, artesanal e perigosamente opaco. Bom para gerar nostalgia, ruim para manter sistema vivo com previsibilidade.

No dialeto POGramador: cada zip e uma capsula do tempo. O problema e que nunca sabemos qual capsula contem o codigo que ainda funciona.





14 Monkey Patching

Monkey Patching e a tecnica de alterar comportamento de codigo existente em tempo de execucao, geralmente sem mudar a origem oficial do componente. Em linguagem POG: e colocar remendo direto no macaco e mandar ele continuar o show.

Em algumas linguagens dinamicas, isso e facil e ate util em cenarios controlados (testes, adaptacoes pontuais). Em ambiente desorganizado, vira detonador de efeito colateral.


14.1 Como aparece em projeto real


	sobrescrever metodo de biblioteca para “corrigir bug”

	alterar prototipo/classe global para todas as chamadas

	injetar comportamento diferente dependendo de ambiente

	patch em runtime para evitar fork de dependencia



Sem fronteira clara, ninguem sabe mais qual e o comportamento original.



14.2 Exemplo didatico (JavaScript)

// biblioteca esperava toUpperCase normal
String.prototype.toUpperCase = function () {
  // "patch" com regra local de negocio
  return this.replace(/a/g, '@').toUpperCase();
};

console.log('casa'.toUpperCase());
// resultado inesperado para qualquer modulo que use string


Esse patch resolve “um problema” local e cria surpresa global.



14.3 Exemplo didatico (Python)

class Gateway:
    def cobrar(self, valor):
        return f"cobrando {valor}"

gateway = Gateway()

# monkey patch em runtime

def cobrar_fake(valor):
    return "cobranca desativada"

gateway.cobrar = cobrar_fake


Em teste, pode ser util para simular dependencias. Em producao, sem controle, vira fonte de bug dificil de rastrear.



14.4 Quando a tecnica pode ser aceitavel


	ambiente de teste isolado

	workaround temporario com prazo e rastreio

	adaptacao de legado sem alternativa imediata



Mesmo nesses casos, o patch precisa ser explicito, limitado e reversivel.



14.5 Sinais de abuso


	patches globais sem documentacao

	comportamento diferente entre ambientes sem motivo claro

	incidentes “fantasmas” que somem ao reiniciar processo

	dependencia de ordem de importacao/execucao



Quando o sistema so funciona com “sequencia certa de inicializacao”, monkey patch virou arquitetura.



14.6 Mitigacao pragmatica


	preferir extensao oficial (wrapper, adapter, subclass) quando existir

	isolar patch em modulo unico com nome explicito

	registrar ticket e prazo para remocao

	cobrir com teste que valide comportamento esperado

	evitar alterar objetos globais compartilhados



Monkey patch sem governanca e tiro de escopeta em runtime.



14.7 Resumo POG

Monkey Patching e poderosa, rapida e perigosa na mesma proporcao. Resolve dor imediata e pode contaminar comportamento do sistema inteiro.

No dialeto POGramador: e trocar peca de motor com o carro em movimento. Pode ate continuar andando, mas voce nunca mais confia no painel.





15 Incremental patching debug

A tecnica de Incremental Patching Debug resolve bug sem investigar causa raiz: aplica patch pequeno, testa, aplica outro patch, testa de novo, e repete ate o erro “sumir”.

E um processo de tentativa e erro orientado a ansiedade.


15.1 Ritual de aplicacao


	a versao atual parou

	pega um zip antigo “que funcionava”

	reaplica arquivos por substituicao parcial

	sobe para homologacao

	se passar no smoke test, chama de correcao



No curto prazo, pode destravar incidente. No longo prazo, mistura estados de codigo sem rastreabilidade.



15.2 Exemplo classico

Patch 1: trocar apenas Controller
Patch 2: voltar Repository para versao de ontem
Patch 3: copiar Utils de outro branch
Patch 4: comentar trecho suspeito
Resultado: erro principal sumiu, dois bugs novos nasceram

O nome “incremental” da impressao de metodo cientifico. A pratica costuma ser bricolagem emergencial.



15.3 O que quase nunca entra nesse fluxo


	depuracao real

	reproducao consistente do problema

	teste automatizado de regressao

	analise de impacto



Sem essas etapas, correcao vira loteria estatistica.



15.4 Por que isso e comum


	pressao por hotfix imediato

	sistema sem observabilidade

	equipe sem ambiente reproduzivel

	cultura de apagar incendio e seguir



A tecnica nao surge de incompetencia individual. Surge de contexto tecnico desorganizado.



15.5 Exemplo didatico


15.5.1 Versao POG

// "corrige" null pointer sem entender origem
if (cliente == null) {
    cliente = new Cliente();
}


Esse patch elimina a excecao localmente, mas pode mascarar falha de integracao que deveria impedir o fluxo.



15.5.2 Versao mais segura

if (cliente == null) {
    throw new RegraDeNegocioException("Cliente obrigatorio para concluir pedido");
}


E junto disso:


	reproduzir cenario em teste

	investigar por que cliente veio nulo

	corrigir na origem






15.6 Risco acumulado


	codigo vira mosaico de remendos

	regressao silenciosa cresce

	conhecimento do sistema fica tribal

	cada novo patch aumenta medo de mudar



Quando o time diz “nao encosta nisso que pode piorar”, o incremental patching ja virou cultura.



15.7 Como evoluir sem parar entrega


	manter hotfix emergencial quando necessario

	abrir tarefa obrigatoria de causa raiz apos incidente

	registrar testes de regressao para o bug corrigido

	reduzir area de patch com observabilidade (logs, metricas, tracing)



Assim voce preserva velocidade operacional sem normalizar gambiarra perpetua.



15.8 Resumo POG

Incremental Patching Debug e curativo util para sangramento imediato. O erro esta em chamar curativo de tratamento definitivo.

No glossario POGramador: e consertar encanamento com fita isolante em camadas progressivas e medir sucesso pelo tempo ate o proximo vazamento.





16 My precious

A tecnica My Precious estabelece propriedade emocional de codigo: “esse modulo e meu, so eu mexo”. O objetivo oculto e manter controle absoluto sobre um trecho critico e, por tabela, sobre o fluxo de trabalho da equipe.


16.1 Sinais classicos


	apenas uma pessoa aprova PR daquele modulo

	qualquer alteracao exige consulta ao “dono”

	documentacao minima, contexto maximo na cabeca de alguem

	incidentes resolvidos por chamada direta para a mesma pessoa



Em estado avancado, o codigo nao pertence ao produto. Pertence ao guardiao.



16.2 Por que isso acontece


	historico de sistema criado por uma pessoa so

	falta de padrao de compartilhamento de conhecimento

	inseguranca tecnica (medo de “estragarem” o que funciona)

	reconhecimento organizacional baseado em dependencia



My Precious nao e so tecnica de codigo. E dinamica de poder tecnico.



16.3 Exemplo do efeito colateral

Dev A entra de ferias -> modulo de faturamento para
Dev A adoece -> release adiado
Dev A sai da empresa -> time abre 17 chamados de emergencia

Quando continuidade depende de uma unica pessoa, o risco do negocio ja esta materializado.



16.4 Exemplo didatico de comportamento


16.4.1 Versao My Precious

// Classe enorme sem testes
public class FechamentoMensalService {
    // "nao mexer sem falar comigo"
}




16.4.2 Versao colaborativa minima


	testes cobrindo fluxos principais

	revisao em par para mudancas criticas

	README do modulo com regras e pontos de atencao

	rotacao de ownership em tarefas relevantes



Codigo compartilhado reduz dependencia sem eliminar responsabilidade.




16.5 O mito da protecao

A justificativa comum e “se muita gente mexer, vai quebrar”. Na realidade, isolamento sem transparencia costuma piorar:


	bug permanece escondido

	melhoria fica represada

	onboarding nao evolui

	qualidade cai quando o dono nao esta disponivel



Controle individual da uma sensacao de ordem. Colaboracao disciplinada entrega resiliencia real.



16.6 Como desmontar o padrao sem conflito


	mapear modulos com ownership concentrado

	criar pareamento tecnico nas manutencoes criticas

	exigir testes para mudancas de alto risco

	distribuir gradualmente revisao e sustentacao

	reconhecer colaboracao, nao apenas heroismo individual



Mudanca cultural e incremental, mas precisa ser intencional.



16.7 Resumo POG

My Precious protege ego no curto prazo e fragiliza sistema no longo. O projeto fica refem de disponibilidade humana, nao de processo tecnico.

No idioma POGramador: e guardar o anel no bolso e chamar isso de estrategia de governanca de software.





17 Psychoding

Psychoding e a tecnica espiritual da POG: voce nao sabe como resolver, entao abre o navegador, entra em transe de busca, copia blocos de codigo de fontes aleatorias e monta uma solucao por intuicao.

Nao e estudo. E incorporacao tecnica.


17.1 Etapas do transe


	abre o Google com desespero sincero

	cai em forum, gist, post antigo e resposta sem contexto

	copia o trecho que “parece igual”

	ajusta ate compilar

	agradece aos deuses quando passa em homologacao



A mente chama isso de produtividade. O repositorio chama isso de risco latente.



17.2 Exemplo classico

// trecho copiado sem entender impacto
SimpleDateFormat sdf = new SimpleDateFormat("YYYY-MM-dd");
String data = sdf.format(new Date());


Funciona “na maioria dos dias”. Em virada de ano, YYYY pode gerar comportamento inesperado porque representa semana-ano em certos contextos, nao ano calendario.



17.3 Por que Psychoding pega tao facil


	prazo agressivo

	baixa cultura de aprofundamento

	excesso de confianca em snippet pronto

	recompensa imediata por “fazer funcionar”



Copiar e colar nao e pecado em si. O problema e nao validar premissas e nao compreender o que foi trazido.



17.4 Sinais de que a tecnica virou rotina


	codigo com estilos inconsistentes dentro do mesmo metodo

	dependencias adicionadas sem justificativa

	solucoes com API deprecated ou insegura

	time que nao consegue explicar por que algo foi implementado daquele jeito



Quando a explicacao oficial e “peguei no Stack Overflow”, falta camada de engenharia.



17.5 Exemplo didatico de uso consciente


17.5.1 Versao POG

// copiar, ajustar, subir
Pattern p = Pattern.compile("(.*)");




17.5.2 Versao responsavel

// 1) entender o problema
// 2) escolher abordagem
// 3) validar com testes
Pattern p = Pattern.compile("^[A-Z0-9]{8}$");
boolean valido = p.matcher(codigo).matches();


Diferenca principal: intencao explicita e verificavel.




17.6 Como aproveitar pesquisa sem cair em Psychoding


	tratar snippet como referencia, nao como produto final

	ler documentacao oficial da API usada

	escrever teste para casos limite

	registrar por que a solucao foi escolhida



Assim voce usa inteligencia coletiva sem terceirizar entendimento.



17.7 Risco de longo prazo


	base incoerente e dificil de manter

	vulnerabilidades por codigo copiado sem auditoria

	efeito “torre de babel” entre modulos

	dependencia de sorte para incidentes nao acontecerem



Psychoding gera entrega rapida, mas cobra pedagio tecnico crescente.



17.8 Resumo POG

Psychoding e mediunidade aplicada ao backlog: incorpora codigo de terceiros e espera que os espiritos da producao colaborem.

No evangelho POGramador: pesquisar e necessario, mas compreender e opcional so ate a primeira madrugada de incidente.





18 Gambi Design Patterns

Depois de entender os principios e dominar as tecnicas, chegamos ao ponto em que a POG finalmente ganha forma visivel no codigo.

Bem-vindo ao catalogo dos Gambi Design Patterns (GDPs).


18.1 O que sao Gambi Design Patterns

Sao padroes recorrentes de implementacao improvisada que aparecem em projetos de software sob pressao, com contexto incompleto e prazos irresponsaveis.

Um GDP nao e um bug isolado. E um comportamento arquitetural repetido.

Quando o mesmo tipo de remendo aparece em sistemas diferentes, linguagens diferentes e equipes diferentes, estamos diante de um pattern.



18.2 Por que catalogar a desgracenca

Catalogar GDPs tem tres utilidades reais:


	Nomear o problema Se voce consegue nomear, voce consegue discutir com clareza.


	Reconhecer cedo Padrao identificado cedo custa menos para conter.


	Ensinar sem moralismo Todo mundo ja fez pog. O objetivo aqui e entendimento, nao tribunal.




Assim como os design patterns classicos documentam solucoes elegantes, os GDPs documentam solucoes pragmaticas de alto potencial radioativo.



18.3 Estrutura dos capitulos desta secao

Cada GDP foi escrito para responder quatro perguntas:


	como ele nasce

	como reconhecer no codigo

	por que ele parece uma boa ideia no curto prazo

	qual divida ele deixa no medio/longo prazo



Essa abordagem evita simplificacao infantil do tipo “isso e certo” vs “isso e errado”. Em software real, quase tudo e trade-off. A POG so deixa os trade-offs mais caros e mais rapidos.



18.4 Do accidental para o institucional

Um ponto importante: o primeiro uso de um GDP geralmente e acidental. O problema comeca quando a equipe institucionaliza o padrao:


	documenta como “jeito da casa”

	replica entre modulos

	normaliza como cultura de entrega



Nesse momento, o pattern deixa de ser excecao e vira metodo operacional.



18.5 Relacao com Tecnicas e Principios

Se os Principios sao os valores e as Tecnicas sao os rituais, os GDPs sao os artefatos finais da invocacao.

Em linguagem simples:


	principio orienta a decisao

	tecnica executa a decisao

	pattern expoe o resultado no codigo



Por isso, esta secao e a mais concreta do livro: aqui a teoria vira classe, metodo, endpoint, trigger, script e trauma de producao.



18.6 Uma nota de honestidade

Voce vai encontrar, nos proximos capitulos, patterns que talvez existam hoje no seu projeto.

Nao se culpe. Nao negue. Nao abra uma task de refatoracao total para segunda-feira.

Faça o que um POGramador lucido faz:


	reconheca

	priorize

	mitigue

	evolua sem quebrar tudo





18.7 Encerramento da abertura

Os Gambi Design Patterns sao um espelho da engenharia sob pressao. Eles revelam menos sobre linguagem e framework, e mais sobre contexto, processo e comportamento humano.

Nos capitulos seguintes, voce vai rir, se identificar, ficar levemente desconfortavel e, com sorte, sair com mais criterio para decidir quando improvisar e quando segurar a marreta.

Comecemos o catalogo da desgracenca.





19 WTF / WTH / QPE

O WTF / WTH / QPE e o padrao do trecho inexplicavel que “funciona” e, justamente por isso, ninguem tem coragem de tocar. Ele nasce de acumulacao de microajustes sem modelo mental claro.


19.1 A assinatura da entidade

"/ .*?<  ".replaceAll("", "").trim();


Voce le, pisca, respira fundo e pensa: “QPE e essa porra?”.



19.2 Como esse padrao aparece


	regex sem explicacao de intencao

	cadeia de transformacoes opacas (replace, substring, split) em sequencia

	condicoes com dupla negacao e sem nome intermediario

	codigo que depende de ordem acidental de operacoes



Em geral, o autor resolveu um bug real. O problema e que o conserto ficou sem contexto e sem contrato testavel.



19.3 Causa tipica


	hotfix de emergencia

	copia de snippet sem entendimento completo

	falta de testes de comportamento

	ausencia de revisao semantica



No dia da entrega, passa. Na sprint seguinte, vira area proibida.



19.4 Exemplo didatico


19.4.1 Versao POG

String out = entrada
    .replace("--", "")
    .replaceAll("[\\s]+", " ")
    .replace(" ;", ";")
    .trim();


Sem contexto, ninguem sabe quais casos a regra cobre.



19.4.2 Versao explicita

public String normalizarComando(String entrada) {
    String semComentario = removerComentarioInline(entrada);
    String espacosNormalizados = normalizarEspacos(semComentario);
    return normalizarSeparadores(espacosNormalizados);
}

private String removerComentarioInline(String texto) {
    // remove tudo apos "--"
    int idx = texto.indexOf("--");
    return idx >= 0 ? texto.substring(0, idx) : texto;
}


Aqui o comportamento fica nomeado por intencao. Se mudar regra, voce sabe onde alterar.




19.5 Como evitar o efeito “codigo magico”


	nomear subpassos com semantica de negocio

	adicionar testes com exemplos reais de entrada/saida

	documentar limites da regra (o que nao cobre)

	preferir clareza a “one-liner genial”



Codigos curtos nao sao automaticamente bons. Codigos entendiveis sao.



19.6 O perigo social do QPE

Trecho opaco cria dependencia pessoal. So quem escreveu “entende”. Isso vira gargalo humano e risco de continuidade.

Quando equipe evita mexer por medo, o software para de evoluir com seguranca.



19.7 Correcao pragmatica


	escolher um trecho QPE de alto impacto

	escrever testes de comportamento atual

	refatorar para passos nomeados

	manter resultado identico e reduzir opacidade



Assim voce melhora entendimento sem alterar regra de negocio no susto.



19.8 Resumo POG

WTF/WTH/QPE e o ponto onde codigo deixa de ser comunicacao e vira feitico. Pode funcionar anos, mas cobra caro em manutencao e transferencia de contexto.

Na gramatica POGramadora: quando a explicacao de um trecho comeca com “nao me pergunte”, ja estamos no dominio do QPE.





20 RCP Pattern (Reuse by Copy and Paste)

O RCP Pattern (Reuse by Copy and Paste) e o coracao industrial da POG. A regra e objetiva: se um trecho resolveu um problema, multiplique ele sem pudor.

Ctrl+C e Ctrl+V viram framework de produtividade.


20.1 Principio da Reflexao Reprodutoria

A logica e quase poetica:


	copiar acelera entrega

	adaptar “na unha” parece barato

	cada copia vira uma variante do original



No inicio, a equipe sente ganho real de velocidade. Depois, cada alteracao exige cacar todas as duplicacoes, e sempre sobra uma esquecida.



20.2 Exemplo didatico

// Modulo A
if (usuario == null || usuario.getStatus().equals("INATIVO")) {
    throw new RegraDeNegocioException("Usuario invalido");
}

// Modulo B (copiado e colado)
if (usuario == null || usuario.getStatus().equals("INATIVO")) {
    throw new RegraDeNegocioException("Usuario invalido");
}

// Modulo C (copiado e "adaptado")
if (usuario == null || usuario.getStatus().equals("INATIVO") || usuario.isBloqueado()) {
    throw new RegraDeNegocioException("Usuario invalido");
}


Quando a regra muda, A e B atualizam. C fica diferente. Surge bug “aleatorio” por divergencia de comportamento.



20.3 Smells associados


	duplicacao de codigo

	shotgun surgery (uma mudanca, muitos arquivos)

	incoerencia de regra entre fluxos “parecidos”

	testes repetitivos cobrindo variacoes acidentais



Esse padrao costuma ser invisivel no code review rapido, porque cada trecho isolado “faz sentido”. O problema esta na soma.



20.4 Por que times caem nisso


	backlog pressionando por throughput

	ausencia de componentes reutilizaveis simples

	medo de refatorar codigo compartilhado e quebrar legado

	cultura de “depois a gente organiza”



No contexto certo, copiar e colar e uma decisao taticamente racional. O erro e transformar tatica emergencial em estrategia permanente.



20.5 Evolucao didatica


20.5.1 Versao com copia

// regra repetida em varios lugares
if (pedido == null || pedido.getItens().isEmpty()) {
    throw new RegraDeNegocioException("Pedido invalido");
}




20.5.2 Versao com encapsulamento minimo

public final class ValidadorPedido {
    public static void validar(Pedido pedido) {
        if (pedido == null || pedido.getItens().isEmpty()) {
            throw new RegraDeNegocioException("Pedido invalido");
        }
    }
}

// uso
ValidadorPedido.validar(pedido);


Agora a regra tem dono unico. Mudou uma vez, mudou para todos.




20.6 Estrategia pratica para legado


	medir duplicacao dos trechos criticos

	criar utilitario/servico pequeno para regra comum

	migrar usos aos poucos (por modulo)

	cobrir com testes de contrato



Sem “big bang”. Sem promessa heroica.



20.7 Resumo POG

RCP e maravilhoso para nascer software rapido e produzir variacoes criativas de bug. Em projetos longos, vira multiplicador de custo de manutencao.

No dicionario POGramador: e clonar problema em alta disponibilidade para garantir demanda futura da sustentacao.





21 Hardcoded Data

No Hardcoded Data, dado de configuracao, regra de negocio e detalhe de ambiente sao colocados diretamente no codigo-fonte. O mantra e simples: “se esta no codigo, eu sei onde esta”.

O problema e que o codigo vira ao mesmo tempo executavel, banco de parametros e painel operacional.


21.1 Exemplo classico

// Xunxa o nome da impressora no codigo. Quem quer escolher impressora?
infoImpressao = ImpressaoUtils.getInfoImpressao(codigoRelatorio, "PADRAO");


Hoje e o nome da impressora. Amanha e URL de servico, aliquota fiscal, chave de parceiro e data de corte. Em poucas sprints, o deploy vira painel de configuracao manual.



21.2 Sinais de que o padrao tomou conta


	strings magicas repetidas em varias classes

	alteracao de regra operacional exigindo merge + pipeline

	ambiente homolog/producao diferenciados por if (isProd)

	chamados de negocio resolvidos com “vamos subir patch”



Quando mudar um texto de mensagem exige release, o Hardcoded Data venceu.



21.3 Por que ele aparece


	pressa para colocar funcionalidade no ar

	falta de estrategia de configuracao por ambiente

	legado sem centralizacao de parametros

	medo de criar tabela/config store “mais uma vez”



No curto prazo, parece pratico. No longo, todo ajuste vira risco de regressao funcional.



21.4 Exemplo didatico de evolucao


21.4.1 Versao POG

public void emitirRelatorio() {
    String impressora = "PADRAO";
    String endpoint = "https://api.parceiro.com/v1";
    int timeout = 30;
    // ...
}




21.4.2 Versao com configuracao explicita

public class ConfiguracaoRelatorio {
    private final String impressoraPadrao;
    private final String endpointParceiro;
    private final int timeoutSegundos;

    public ConfiguracaoRelatorio(String impressoraPadrao, String endpointParceiro, int timeoutSegundos) {
        this.impressoraPadrao = impressoraPadrao;
        this.endpointParceiro = endpointParceiro;
        this.timeoutSegundos = timeoutSegundos;
    }

    public String getImpressoraPadrao() { return impressoraPadrao; }
    public String getEndpointParceiro() { return endpointParceiro; }
    public int getTimeoutSegundos() { return timeoutSegundos; }
}

public void emitirRelatorio(ConfiguracaoRelatorio cfg) {
    // usa cfg sem chutar valor em runtime
}


A regra sai do codigo e vai para contrato de configuracao. Resultado: menos release de emergencia para ajuste operacional.




21.5 Impactos de negocio


	time de produto depende de dev para mudar qualquer parametro

	incidentes aumentam por ajustes urgentes em horario critico

	rollback de versao pode desfazer configuracoes validas

	auditoria fica fraca (quem mudou o que e quando?)





21.6 Correcao sem trauma


	mapear constantes criticas (URL, timeout, codigos de regra)

	extrair para configuracao externa versionada

	manter default seguro apenas onde fizer sentido

	adicionar validacao na inicializacao do sistema



Assim voce reduz acoplamento sem parar a entrega.



21.7 Resumo POG

Hardcoded Data e a forma mais rapida de transformar deploy em ferramenta administrativa. Funciona enquanto o sistema e pequeno. Quando cresce, vira gargalo organizacional.

No linguajar POGristico: e tatuar instrucoes operacionais no corpo do programa e fingir surpresa quando mudar de ideia doi.





22 Forceps

O Forceps e o padrao obstetrico da POG. Ele aparece quando uma variavel nao recebe o valor esperado e, em vez de investigar causa raiz, o POGramador “puxa” o valor correto no ponto de uso.

Em termos praticos, e a arte de corrigir o sintoma localmente para manter o fluxo vivo. Funciona hoje. Custa caro amanha.


22.1 Exemplo classico

/* Variavel e inicializada */
String valor = "123";

/* ... logica do programa ... */

/* Dentro de um metodo que utiliza a variavel 'valor' */
if (!"123".equals(valor)) {
    valor = "123";
    processaValor(valor);
}


O trecho parece inocente. Mas repare no que ele comunica: “se veio errado, conserta aqui mesmo”. Isso cria uma blindagem local que mascara o defeito real do fluxo.



22.2 Como reconhecer o Forceps no codigo


	verificacoes redundantes do mesmo valor em varios pontos

	atribuicoes “defensivas” copiadas entre metodos

	comentarios tipo “garantia extra para evitar bug intermitente”

	logica de negocio baseada em fallback manual



Quando voce encontra o mesmo if em cinco classes diferentes, ja existe um ritual de Forceps consolidado.



22.3 Por que o time adota isso

Motivos reais:


	bug em producao sem tempo para investigacao profunda

	desconhecimento do fluxo completo em legado grande

	medo de tocar na origem e quebrar outras telas

	cultura de apagar incendio primeiro e pensar depois



Ou seja, o Forceps quase nunca nasce por maldade. Ele nasce por sobrevivencia operacional.



22.4 Impactos no medio prazo


	causa raiz segue ativa

	inconsistencias se espalham em silencio

	manutencao fica confusa (qual ponto esta “corrigindo” o que?)

	testes passam sem garantir consistencia global



No fim, o sistema vira uma colcha de microcorrecoes. Cada parte se protege da outra.



22.5 Exemplo didatico de abordagem melhor

public class PedidoService {

    public void processar(Pedido pedido) {
        String codigo = normalizarCodigo(pedido.getCodigo());
        validarCodigo(codigo);
        pedido.setCodigo(codigo);
        repositorio.salvar(pedido);
    }

    private String normalizarCodigo(String codigo) {
        if (codigo == null) {
            return "123"; // regra explicita e centralizada
        }
        return codigo.trim();
    }

    private void validarCodigo(String codigo) {
        if (!"123".equals(codigo)) {
            throw new RegraDeNegocioException("Codigo invalido para este fluxo");
        }
    }
}


Aqui, a regra fica centralizada. Se a origem estiver ruim, voce tem erro claro para tratar no ponto certo, em vez de remendo espalhado.



22.6 Estrategia pragmatica de correcao


	mapear onde o valor esta sendo forçado

	eleger um unico ponto de normalizacao

	adicionar teste de contrato para entrada/saida

	remover os Forceps duplicados aos poucos



Isso evita refatoracao heroica e reduz risco de regressao.



22.7 Resumo POG

Forceps e excelente para entregar hoje e manter o chamado fechado. Mas ele nao resolve defeito sistemico; apenas empurra o problema para frente com juros.

No dialeto POGrames: e um parto feito no corredor. A crianca nasce, mas o prontuario vira lenda urbana dentro do repositorio.





23 Ostrich Syndrome Skill

O Ostrich Syndrome Skill e a habilidade de enterrar a cabeca tecnicamente: warning, deprecacao e alerta de analise estatica sao tratados como ruido de fundo.

A filosofia e ancestral:


	o que os olhos nao veem, o backlog nao sente

	se compila, ta pronto

	warning e ciume da IDE




23.1 Forma ritualistica

@SuppressWarnings("all")
public class ProcessadorLegado {
    // aqui jaz a paz de espirito da equipe
}


Esse artefato da tranquilidade elimina alertas visiveis, mas nao elimina risco real.



23.2 Sinais no projeto


	dezenas de supressoes globais sem justificativa

	upgrade de dependencia sempre adiado porque “vai quebrar tudo”

	build verde com log amarelo infinito

	regra de review: “nao mexe nisso agora”



Quando warning vira paisagem, defeito vira surpresa.



23.3 Por que acontece

Motivos praticos:


	pressao por entrega imediata

	base legada muito ruidosa

	pouca maturidade de observabilidade

	medo de abrir frente tecnica sem patrocinio



Ignorar alerta pode ser decisao temporaria legitima. O problema e quando temporario vira dogma.



23.4 Exemplo didatico


23.4.1 Versao POG

@SuppressWarnings("deprecation")
public void salvar(Data data) {
    repositorioAntigo.save(data); // API descontinuada ha anos
}




23.4.2 Versao com controle

public void salvar(Data data) {
    // TODO(POG-123): migrar para NovoRepositorio ate 2026-06-30
    repositorioAntigo.save(data);
}


Melhor ainda:

public void salvar(Data data) {
    if (featureFlags.usarNovoRepositorio()) {
        novoRepositorio.save(data);
        return;
    }
    repositorioAntigo.save(data);
}


Nesse formato, alerta vira plano. Nao e so silenciamento.




23.5 Risco acumulado


	vulnerabilidade de dependencia desatualizada

	comportamento removido em upgrade futuro

	dificuldade de onboarding (ninguem sabe o que pode quebrar)

	incidentes em cadeia quando enfim chega a migracao





23.6 Como tratar sem paralisar entrega


	classificar warning por severidade

	criar “orcamento de warning” por sprint

	proibir novas supressoes globais

	exigir comentario com ticket e prazo ao suprimir

	priorizar deprecacoes em codigo mais usado



Isso reduz ruido progressivamente sem exigir limpeza total imediata.



23.7 Resumo POG

Ostrich Syndrome Skill da alivio emocional no curto prazo e ansiedade tecnica no longo. Silenciar alerta e facil. Gerenciar consequencia, nem tanto.

No evangelho POGrames: enterramos a cabeca para nao ver o problema, e depois abrimos incidente para descobrir por que ele cresceu no escuro.



23.8 Mini checklist de mitigacao

Toda supressao de warning deve trazer justificativa tecnica e prazo para revisao. Se nao houver ticket, dono e data, nao e supressao estrategica: e abandono controlado. A diferenca entre pragmatismo e negligencia esta na rastreabilidade da decisao.

Esse controle evita que o warning vire folklore tecnico.





24 Nonsense Flag Nonsense Naming

O Nonsense Flag Nonsense Naming transforma nomeacao em criptografia artesanal. Variaveis nao explicam intencao; elas insinuam, confundem e exigem mediunidade de quem le.

teste1, temp2, a, b, x
jaTrocouDeAba, botaoClicado, foiAtualizado, passouPorAqui
numeroMagico, naoAchou, temErro
anterior5, atual5, anteriorDoAnterior5


Esse padrao costuma vir acompanhado de flags booleans caoticas (isOk, isReady2, podeTalvez), criando fluxo de decisao que parece enquete de rede social.


24.1 Efeito semantico

Nome ruim nao e so “feio”. Ele altera custo cognitivo:


	leitura fica lenta

	regra de negocio vira adivinhacao

	review perde profundidade

	bug de entendimento aumenta



Quando o codigo exige reuniao para explicar cada variavel, a manutencao ja quebrou.



24.2 Exemplo didatico


24.2.1 Versao POG

if (a && !b && x > 0) {
    faz1();
} else if (a && b && x == 0) {
    faz2();
}




24.2.2 Versao legivel

boolean clienteElegivel = cliente.estaAtivo();
boolean pedidoJaFaturado = pedido.isFaturado();
int quantidadeItens = pedido.getItens().size();

if (clienteElegivel && !pedidoJaFaturado && quantidadeItens > 0) {
    gerarFatura();
} else if (clienteElegivel && pedidoJaFaturado && quantidadeItens == 0) {
    registrarInconsistencia();
}


A logica pode ser a mesma. A diferenca e que agora o leitor entende o dominio sem abrir 12 arquivos.




24.3 Por que o time cai nisso


	codigo escrito sob estresse

	falta de padrao de nomeacao

	medo de “nome grande”

	copia de variavel antiga para novo contexto



E comum em legado com baixa cobertura de teste: ninguem renomeia por receio de quebrar algo invisivel.



24.4 Nonsense Flag: o primo perigoso

Flags sem semantica clara criam combinacoes explosivas.

if (isOk && !isReady && podeAtualizar && modo2) {
    // o que exatamente isso significa?
}


Cada booleano adicional dobra os estados possiveis. Sem modelagem explicita, o fluxo fica impossivel de validar mentalmente.



24.5 Abordagem pragmatica


	renomear primeiro as variaveis de maior impacto

	extrair condicoes para metodos com nome de negocio

	substituir multiplos booleans por enum/objeto de estado

	registrar convencoes simples de nomeacao no time



Pequenas mudancas de semantica trazem ganho real sem refatoracao monstruosa.



24.6 Resumo POG

Nonsense Naming e Nonsense Flag dao sensacao de velocidade na digitacao e cobram pedagio eterno na leitura. O sistema roda, mas o entendimento nao escala.

Na tradicao POGristica: se nem voce entende o nome da variavel depois de uma semana, o ritual foi concluido com excelencia duvidosa.



24.7 Mini checklist de mitigacao

Renomeacao progressiva de variavel e melhoria de baixo risco e alto retorno. Cada nome claro reduz duvida em review, onboarding e debug. Sem semantica compartilhada, a equipe conversa sobre sintaxe e nunca sobre dominio.





25 Commented Code Implementation Comments Forever

O Commented Code Implementation e o padrao em que codigo morto, codigo desativado e blocos de experimento ficam comentados para sempre no arquivo “por seguranca”.

A narrativa e conhecida: “nao apaga, vai que precisa depois”.


25.1 Exemplo classico

public void calcular() {
    // antiga regra de desconto
    // if (cliente.isPremium()) {
    //     total = total.multiply(new BigDecimal("0.8"));
    // }

    // nova regra (temporaria desde 2019)
    if (cliente.isPremium()) {
        total = total.multiply(new BigDecimal("0.85"));
    }
}


O comentario vira arquivo historico embutido no fonte. O problema e que historico verdadeiro ja existe: chama-se Git.



25.2 Problemas que esse padrao cria


	arquivo cresce com ruido sem valor executavel

	leitor nao sabe qual regra vale de fato

	revisao fica lenta, porque ha muito texto irrelevante

	chance de “descomentar” trechos obsoletos por engano



Comentario deveria explicar decisao. Nao substituir versionamento.



25.3 Quando isso comeca


	hotfix de madrugada com medo de perda

	ausencia de confianca em rollback

	equipe sem disciplina de branch/commit claro

	heranca de codigo antigo onde “apagar” e visto como risco



Em contexto de baixa previsibilidade, comentar parece seguro. Na pratica, so adia decisao tecnica.



25.4 Exemplo didatico de alternativa


25.4.1 Versao POG

// TODO remover depois
// chamadaServicoAntigo();
chamadaServicoNovo();

// if (featureX) {
//   fluxoVelho();
// }




25.4.2 Versao controlada

if (featureFlags.usarFluxoNovo()) {
    chamadaServicoNovo();
} else {
    chamadaServicoAntigo();
}


Com feature flag, o comportamento fica explicito e rastreavel. Quando migrar tudo, remove-se o fluxo antigo com commit unico e mensagem clara.




25.5 Comentario bom x comentario ruim

Comentario bom:


	registra contexto de negocio ou decisao arquitetural

	explica “por que” algo existe

	aponta ticket/issue quando ha debito tecnico assumido



Comentario ruim:


	replica o que o codigo ja diz

	guarda codigo morto

	serve de escudo para incerteza eterna





25.6 Estrategia pragmatica de limpeza


	remover blocos comentados sem uso comprovado

	migrar excecoes para tickets rastreaveis

	usar feature flag para transicao real

	adotar regra de review: codigo comentado executavel nao entra



Isso reduz ruido sem interromper entrega.



25.7 Resumo POG

Commented Code Forever e um museu de decisao incompleta. Parece prudente, mas degrada legibilidade e aumenta risco operacional.

Em modo POGramador: e guardar peças de carro velho na sala para “eventual necessidade” e chamar isso de estrategia de manutencao preventiva.



25.8 Mini checklist de mitigacao

Codigo morto deve sair do arquivo e ficar no historico do Git. Comentario bom explica decisao; comentario ruim armazena medo. Se o trecho precisa existir por transicao, feature flag com prazo e opcao mais segura.





26 Reinvented Square Wheel Helper

O Reinvented Square Wheel Helper e o padrao de reimplementar manualmente algo que a linguagem, framework ou biblioteca ja fornece com qualidade melhor.

A motivacao costuma ser nobre: “quero controle total”. O resultado, quase sempre, e uma roda quadrada de manutencao pesada.


26.1 Exemplo classico

if (number.equals("1")) {
    return 1;
} else if (number.equals("2")) {
    return 2;
} else if (number.equals("3")) {
    return 3;
} else if (number.equals("4")) {
    return 4;
} else if (number.equals("5")) {
    return 5;
} // ... ate o infinito


Aqui, algo que poderia ser Integer.parseInt(number) vira cascata manual sujeita a erro, inconsistencia e custo de manutencao absurdo.



26.2 Sintomas do padrao


	helpers enormes para funcao basica

	“framework interno” para resolver problema trivial

	implementacoes caseiras sem teste robusto

	divergencia entre comportamento esperado e padrao de mercado



Quando o time escreve parser de data na mao em projeto Java moderno, a roda quadrada ja esta em producao.



26.3 Por que isso acontece


	desconhecimento de recurso nativo

	trauma com biblioteca antiga

	desconfiança de dependencia externa

	ego tecnico (“eu faco melhor”)



Nem sempre e vaidade. Muitas vezes e falta de repertorio compartilhado no time.



26.4 Exemplo didatico


26.4.1 Versao POG

public boolean isEmailValido(String email) {
    if (email == null) return false;
    if (!email.contains("@")) return false;
    if (!email.contains(".")) return false;
    if (email.startsWith("@")) return false;
    // dezenas de regras incompletas...
    return true;
}




26.4.2 Versao mais segura

public boolean isEmailValido(String email) {
    if (email == null) return false;
    return javax.mail.internet.InternetAddress
        .parse(email, true)
        .length == 1;
}


Voce delega para implementacao madura, reduz bug e foca na regra de negocio real.




26.5 Custo oculto


	aumento de superficie de bug

	onboarding lento (aprender ferramentas internas desnecessarias)

	dificuldade de evolucao (cada helper caseiro vira dependente de contexto)

	retrabalho em manutencao corretiva



Em resumo: mais codigo para manter sem ganho proporcional de valor.



26.6 Correcao pragmatica


	identificar helpers caseiros de alto risco

	comparar com API nativa equivalente

	migrar gradualmente com testes de comportamento

	documentar quando realmente precisar de implementacao propria



Se houver requisito especifico legitimo, mantenha customizacao minima e justificada.



26.7 Resumo POG

Reinvented Square Wheel Helper e o orgulho de construir do zero o que ja existe pronto. Da sensacao de autoria e traz manutencao vitalicia.

No vocabulário POGristico: e trocar elevador por escada rolante movida a manivela para provar independencia tecnologica.



26.8 Mini checklist de mitigacao

Antes de criar helper caseiro, responda: existe API nativa madura para isso? Se existir, o onus da prova e de quem quer reinventar. Em geral, software de negocio ganha mais quando reutiliza base estavel.





27 You Shall Not Pass

O You Shall Not Pass é o padrão de captura total: tudo é envolvido por try/catch amplo, normalmente com Exception ou Throwable, para garantir que nada “escape”.

A intenção parece nobre: proteger o sistema. O efeito real costuma ser o oposto: esconder causa raiz, diluir contexto e dificultar manutenção.


27.1 Sintoma clássico

public String processar(String entrada) {
    try {
        return servicoA.executar(entrada);
    } catch (Throwable t) {
        return "Falha ao processar";
    }
}


Nesse modelo, falhas completamente diferentes viram a mesma resposta:


	erro de validação

	timeout de rede

	bug de programação

	erro de banco

	bug de serialização



Tudo cai no mesmo balaio sem rastreabilidade adequada.



27.2 Por que isso é perigoso

Capturar Throwable é especialmente arriscado porque inclui Error (ex.: OutOfMemoryError), que em geral não deveria ser “tratado” como fluxo comum da aplicação.

Quando o código captura amplo demais:


	o sistema parece estável, mas está cego

	logs úteis somem

	retries automáticos podem repetir operações perigosas

	estado inconsistente pode continuar rodando sem alerta



É o equivalente operacional de desligar o alarme de incêndio porque ele faz barulho.



27.3 Exemplo didático (controle de granularidade)


27.3.1 Versão POG

public Resultado gerarRelatorio(Filtro filtro) {
    try {
        validar(filtro);
        Dados dados = repositorio.buscar(filtro);
        byte[] pdf = renderizador.gerarPdf(dados);
        return Resultado.ok(pdf);
    } catch (Exception e) {
        return Resultado.erro("Não foi possível gerar relatório");
    }
}




27.3.2 Versão com tratamento útil

public Resultado gerarRelatorio(Filtro filtro) {
    try {
        validar(filtro);
    } catch (ValidacaoException e) {
        return Resultado.erro("Filtro inválido: " + e.getMessage());
    }

    Dados dados;
    try {
        dados = repositorio.buscar(filtro);
    } catch (DataAccessException e) {
        logger.error("Falha no banco ao buscar relatório", e);
        return Resultado.erro("Falha temporária ao consultar dados");
    }

    try {
        byte[] pdf = renderizador.gerarPdf(dados);
        return Resultado.ok(pdf);
    } catch (RenderizacaoException e) {
        logger.error("Falha ao renderizar PDF", e);
        return Resultado.erro("Não foi possível gerar o arquivo PDF");
    }
}


Aqui cada tipo de problema recebe:


	tratamento adequado

	mensagem correta

	log contextualizado






27.4 Quando usar captura ampla, então?

Existe um uso legítimo: fronteiras globais de aplicação (filtro HTTP, middleware, handler global), para evitar queda abrupta e registrar erro inesperado.

Mesmo nesses casos:


	capture para registrar e encerrar com segurança

	não converta tudo em “deu ruim” sem contexto

	não continue fluxo normal após falha crítica





27.5 Estratégia de correção gradual

Se seu legado está dominado por catch genérico:


	mapeie os pontos com maior volume de erro

	substitua captura genérica por exceções específicas

	adicione logs com contexto de negócio (id, operação, usuário)

	padronize respostas por categoria de erro

	mantenha fallback global para o que for realmente inesperado



Essa abordagem reduz risco sem parar o trem.



27.6 Resumo POG

You Shall Not Pass nasce da boa intenção de blindar o sistema, mas frequentemente vira blindagem contra diagnóstico. O código até “não quebra” na frente do usuário, porém quebra a capacidade do time de entender e corrigir problemas.

No fim, erro que não aparece não desaparece. Ele só muda de lugar: sai da tela e vai morar no backlog eterno da sustentação.





28 Perfectness Execution Bulletproof

O Bulletproof é o padrão em que toda operação, independentemente do que aconteça, termina com mensagem de sucesso. Deu certo? Sucesso. Deu errado? Sucesso também. Explodiu? Sucesso com fé.

try {
    if (alterar(valor1, valor2)) {
        return new Mensagem("Operação concluída com sucesso!");
    } else {
        return new Mensagem("Operação concluída com sucesso!");
    }
} catch (Throwable e) {
    return new Mensagem("Operação concluída com sucesso!");
}


Na superfície, parece experiência positiva para o usuário. No fundo, é supressão sistemática da realidade.


28.1 Como esse padrão se instala

Ele costuma surgir quando o time sofre pressão por indicadores simplistas, tipo:


	“não pode aparecer erro para o usuário”

	“precisamos reduzir chamados”

	“a tela sempre deve retornar ok”



Em vez de melhorar validação, observabilidade e tratamento adequado, adota-se o atalho: uniformizar resposta de sucesso. O bug deixa de ser visível, mas continua existindo.



28.2 Exemplo didático (problema real disfarçado)

Imagine um endpoint de atualização cadastral:

public Mensagem atualizarEmail(Long usuarioId, String novoEmail) {
    try {
        Usuario usuario = usuarioRepository.findById(usuarioId).orElse(null);

        if (usuario == null) {
            return new Mensagem("Operação concluída com sucesso!");
        }

        usuario.setEmail(novoEmail);
        usuarioRepository.save(usuario);

        // Se save falhar por constraint, cai no catch e também retorna sucesso.
        return new Mensagem("Operação concluída com sucesso!");
    } catch (Exception e) {
        return new Mensagem("Operação concluída com sucesso!");
    }
}


O usuário recebe sucesso mesmo quando:


	ID não existe

	e-mail é inválido

	banco está indisponível

	transação foi revertida



Isso sabota o ciclo de feedback da aplicação.



28.3 Efeito colateral em cadeia

O Bulletproof cria danos silenciosos:


	suporte não consegue reproduzir erro porque “o sistema diz que deu certo”

	monitoramento perde sinal útil

	inconsistência de dados cresce sem alarme

	times consumidores da API tomam decisões erradas com base em falso positivo



É o equivalente a arrancar a luz do painel do carro para “resolver” o aviso do óleo.



28.4 Versão didática melhor (sem perder UX)

Você pode ser amigável com usuário sem mentir para ele:

public ResultadoAtualizacao atualizarEmail(Long usuarioId, String novoEmail) {
    if (novoEmail == null || !novoEmail.contains("@")) {
        return ResultadoAtualizacao.falha("E-mail inválido");
    }

    Usuario usuario = usuarioRepository.findById(usuarioId).orElse(null);
    if (usuario == null) {
        return ResultadoAtualizacao.falha("Usuário não encontrado");
    }

    try {
        usuario.setEmail(novoEmail);
        usuarioRepository.save(usuario);
        return ResultadoAtualizacao.sucesso("E-mail atualizado com sucesso");
    } catch (DataAccessException e) {
        // Log técnico detalhado para equipe
        logger.error("Falha ao atualizar e-mail do usuário {}", usuarioId, e);
        // Mensagem amigável para usuário
        return ResultadoAtualizacao.falha("Não foi possível concluir agora. Tente novamente.");
    }
}


Aqui você tem:


	resultado honesto

	mensagem compreensível

	log técnico para diagnóstico

	separação entre erro de negócio e erro de infraestrutura





28.5 Quando o Bulletproof já está em produção

Não precisa reescrever tudo de uma vez. Estratégia incremental:


	mapear endpoints com maior taxa de chamado

	trocar retorno único por contrato de sucesso/falha

	manter compatibilidade externa temporária

	instrumentar logs e métricas antes de mudar comportamento de UI

	remover catch genérico com retorno otimista





28.6 Resumo POG

Bulletproof é a prova de bala mais famosa da POG: não impede o tiro, só apaga o buraco da parede no relatório. Ele melhora aparência de curto prazo e destrói confiança sistêmica no longo prazo.

Sistema confiável não é o que “sempre responde sucesso”. É o que responde a verdade, com contexto e previsibilidade. O restante é maquiagem operacional com prazo de validade curto.





29 Exception Success

O Exception Success é o padrão em que a exceção deixa de representar situação excepcional e passa a ser usada como fluxo normal da aplicação. Em vez de retornar um resultado, o código “comunica” sucesso, validação, autorização e até regra de negócio por throw.

Na teoria, exceção deveria sinalizar algo fora do caminho esperado. Na prática POG, ela vira API oficial da casa.

public static void somar(int a, int b) {
    System.out.println(a + b);
    // POG clássica: sucesso tratado como "erro"
    throw new RuntimeException("Operação realizada com sucesso!");
}



29.1 Como reconhecer esse padrão

Você provavelmente está diante de um Exception Success quando vê este combo:


	métodos “felizes” que sempre terminam com throw

	catch (Exception e) decidindo regra de negócio

	mensagem de usuário final embutida em exception técnica

	sistema que “funciona” só porque alguém conhece a ordem dos catch



Outro sinal típico é a classe de serviço com assinatura sem retorno útil, e toda decisão sendo tomada no controlador por blocos de captura.



29.2 Exemplo didático (versão POG)

public void processarPagamento(Pagamento pagamento) throws Exception {
    if (pagamento == null) {
        throw new Exception("Pagamento inválido");
    }

    if (pagamento.getValor() <= 0) {
        throw new Exception("Valor deve ser maior que zero");
    }

    gateway.cobrar(pagamento);

    // "Sucesso" sinalizado por exceção para cair no catch correto
    throw new Exception("PAGAMENTO_OK");
}

public String concluir(Pagamento pagamento) {
    try {
        processarPagamento(pagamento);
        return "Fluxo inesperado"; // nunca chega aqui
    } catch (Exception e) {
        if ("PAGAMENTO_OK".equals(e.getMessage())) {
            return "Pagamento concluído";
        }
        return "Falha: " + e.getMessage();
    }
}


Esse código parece “esperto” no curto prazo, porque centraliza tudo no catch. O problema é que mistura semânticas diferentes no mesmo canal:


	erro de infraestrutura

	erro de validação

	estado de sucesso



Quando tudo vira exceção, nada mais é exceção.



29.3 Por que isso aparece em projeto real

Esse padrão nasce por combinação de pressa, legado e falta de contrato claro entre camadas. É comum em contexto onde o time precisa “fazer entrar em produção hoje” e adota soluções improvisadas:


	não havia tipo de retorno definido

	o sistema já tinha muito try/catch espalhado

	cada dev adicionou mais um throw para não quebrar fluxo antigo



Também aparece como versão digital do cargo cult programming: alguém viu que um throw resolveu um bug específico, copiou a técnica, e passou a reproduzir o ritual sem entender o efeito colateral.



29.4 Impactos técnicos

Os danos costumam ser progressivos:


	observabilidade piora, porque logs ficam poluídos com “erros” que não são erros

	monitoramento dispara alerta falso

	leitura do código fica ambígua

	testes ficam frágeis, pois dependem de mensagens textuais

	qualquer internacionalização quebra regra de negócio baseada em e.getMessage()



Em sistemas Java, isso ainda conflita com a intenção da própria linguagem e bibliotecas, que tratam exceções como mecanismo de anomalia de execução, não como retorno padrão.



29.5 Exemplo didático (versão menos caótica)

public final class ResultadoPagamento {
    private final boolean sucesso;
    private final String mensagem;

    private ResultadoPagamento(boolean sucesso, String mensagem) {
        this.sucesso = sucesso;
        this.mensagem = mensagem;
    }

    public static ResultadoPagamento ok(String mensagem) {
        return new ResultadoPagamento(true, mensagem);
    }

    public static ResultadoPagamento falha(String mensagem) {
        return new ResultadoPagamento(false, mensagem);
    }

    public boolean isSucesso() { return sucesso; }
    public String getMensagem() { return mensagem; }
}

public ResultadoPagamento processarPagamento(Pagamento pagamento) {
    if (pagamento == null) {
        return ResultadoPagamento.falha("Pagamento inválido");
    }

    if (pagamento.getValor() <= 0) {
        return ResultadoPagamento.falha("Valor deve ser maior que zero");
    }

    try {
        gateway.cobrar(pagamento);
        return ResultadoPagamento.ok("Pagamento concluído");
    } catch (GatewayIndisponivelException e) {
        // aqui sim: exceção realmente excepcional
        return ResultadoPagamento.falha("Gateway indisponível");
    }
}


Perceba a diferença didática:


	fluxo de negócio usa retorno explícito

	exceção fica para falha inesperada/infraestrutura

	contrato fica legível para quem mantém depois





29.6 Resumo POG

Exception Success é sedutor porque parece reduzir código no início. Só que ele troca clareza por truque, e truque em software envelhece mal. Em termos gambiarrísticos, é uma técnica de “entrega imediata com juros compostos”.

Se ainda existir Exception Success no seu sistema, não precisa derrubar tudo. Comece isolando os pontos críticos e separando, pouco a pouco, resultado de negócio de condição excepcional. Assim você preserva produção e reduz o caos sem ferir o GLS.





30 String Sushiman

No String Sushiman, parametros estruturados sao compactados em uma string “linguicao” com delimitadores magicos. Depois, o codigo faz split em camadas e torce para cada posicao vir no formato correto.


30.1 Exemplo classico

public Tabela montaTabela(String linguicao) {

    String[] colunas = linguicao.split("\\|");

    for (String coluna : colunas) {
        String[] campos = coluna.split(",");
        // POGuices com os valores
    }
}


Parece rapido para enviar dados sem criar contrato formal. O custo vem depois: qualquer virgula fora do lugar quebra o parsing inteiro.



30.2 Sinais de maturidade Sushiman


	metodo com um unico String recebendo tudo

	documento externo explicando “ordem dos campos” em texto livre

	erros de parse intermitentes conforme dados reais

	codigo cheio de split, trim, substring e try/catch



Quando a validacao e “se nao explodiu, ta valido”, o padrao esta em pleno vigor.



30.3 Por que aparece


	pressa para integrar sistemas heterogeneos

	aversao a criar DTO/JSON/XML formal

	legado com protocolo artesanal

	tentativa de economizar mudancas de assinatura



No curtissimo prazo, pode destravar entrega. No medio, vira debito tecnico dificil de auditar.



30.4 Exemplo didatico


30.4.1 Versao POG

String payload = "nome=Ana,idade=29,ativo=true|nome=Joao,idade=31,ativo=false";


Se um nome vier com virgula ("Ana, Maria"), tudo quebra.



30.4.2 Versao com contrato simples

public record UsuarioDTO(String nome, int idade, boolean ativo) {}

List<UsuarioDTO> usuarios = List.of(
    new UsuarioDTO("Ana", 29, true),
    new UsuarioDTO("Joao", 31, false)
);


Ou, se fronteira exigir texto, use formato estruturado (JSON/CSV formal) com parser robusto e esquema validado.




30.5 Impacto operacional


	bugs de integracao de dificil reproducao

	acoplamento forte ao “formato secreto”

	evolucao dolorosa (adicionar campo quebra consumidores antigos)

	testes extensos so para validar parsing





30.6 Mitigacao pragmatica


	mapear strings-protocolo mais criticas

	criar parser dedicado com validacao clara

	converter cedo para objeto tipado

	planejar migracao para contrato explicito



Mesmo sem reescrever tudo, so de isolar parsing em um ponto voce reduz caos.



30.7 Resumo POG

String Sushiman e arte de empilhar informacao heterogenea em texto linear e chamar isso de protocolo. Funciona enquanto todos decoram a ordem. Quando alguem esquece, estoura em producao.

No idioma POGramador: e servir feijoada em rolinho de sushi. Alimenta, mas cada mordida e um evento imprevisivel.



30.8 Mini checklist de mitigacao

Antes de aceitar uma linguica de string em producao, valide tres pontos: formato versionado, parser unico e erro com mensagem clara. Sem isso, cada consumidor interpreta o payload de um jeito e a integracao vira loteria. Em ambiente serio, protocolo textual sem contrato formal e convite para incidente recorrente.





31 Sleeper Human Factor

O Sleeper Human Factor aplica atraso artificial para simular processamento, sincronizar corridas acidentais ou “melhorar percepcao” do usuario. O instrumento ritual e sleep.

public class MedidorDePOGresso implements Runnable {
    public void run() {
        while (true) {
            // Realiza um processamento rapido aqui...
            try {
                // ... atrasa propositalmente aqui
                Thread.sleep(1000);
            } catch (InterruptedException exc) {
            }
            progress.setValue(blablabla.getPorcentagem());
        }
    }
}


No curto prazo, parece resolver sintomas. No longo, vira latencia institucionalizada.


31.1 Onde esse padrao aparece


	interface piscando rapido demais e alguem “acalma” com delay

	integracao eventual falhando e o time adiciona espera fixa

	teste instavel ficando “verde” com sleep(2000)

	fila/concorrencia sem sincronizacao correta



Quando o sistema depende de dormir para funcionar, o design acordou errado.



31.2 Motivos reais para adocao


	corrida de thread dificil de reproduzir

	deadline apertado com bug intermitente

	falta de mecanismo de sincronizacao/evento

	cultura de “se resolveu, nao mexe”



O Human Factor nao e burrice; e resposta emergencial. O problema e deixar permanente.



31.3 Exemplo didatico


31.3.1 Versao POG

public void enviarNotificacao(Pedido pedido) {
    salvar(pedido);
    try {
        Thread.sleep(3000); // espera "banco refletir"
    } catch (InterruptedException e) {
    }
    mensageria.publicar(pedido.getId());
}




31.3.2 Versao com sincronizacao explicita

public void enviarNotificacao(Pedido pedido) {
    Pedido salvo = repositorio.salvar(pedido);
    // publica quando ha id persistido, sem espera arbitraria
    mensageria.publicar(salvo.getId());
}


Se precisar de consistencia assincrona, use evento transacional, fila confirmada ou mecanismo de retry com backoff controlado. Nao tempo fixo magico.




31.4 Impacto tecnico


	tempo de resposta pior sem ganho funcional

	throughput reduzido sob carga

	comportamento imprevisivel conforme ambiente

	testes lentos e flakey



Delay fixo pode passar na maquina do dev e falhar em producao, ou vice-versa.



31.5 Como remover com baixo risco


	localizar sleeps fora de UI de animacao intencional

	classificar por finalidade (sincronizacao, UX, workaround)

	substituir por evento, callback, lock ou polling robusto com timeout

	medir antes/depois com metrica de latencia





31.6 Sobre UX real

Nem todo atraso e pecado. Em UX, feedback visual minimo pode ser util para comunicar estado. A diferenca e intencao e local:


	atraso visual controlado na camada de interface: ok

	atraso tecnico para esconder bug de fluxo: risco alto





31.7 Resumo POG

Sleeper Human Factor e anestesia operacional. O paciente para de reclamar por alguns segundos, mas a causa da dor permanece.

No catecismo POGristico: se o bug corre demais, deita ele no sleep e chama de experiencia humana otimizada.





32 Black Cat In A Dark Room

O Black Cat In A Dark Room é o padrão em que um método recebe um Map genérico (ou estrutura equivalente) com tudo dentro: parâmetros de entrada, flags de comportamento, contexto técnico e, às vezes, traumas da sprint passada.

É como procurar um gato preto num quarto escuro: você sabe que algo está lá, mas não sabe onde, nem em qual tipo.


32.1 Anatomia da gambiarra

A ideia inicial parece elegante: “em vez de 12 parâmetros, passo um Map só”. O problema é que esse ganho de assinatura vira perda de contrato.

public Object processar(Map<String, Object> params) {
    String operacao = (String) params.get("op");
    Long clienteId = Long.valueOf(params.get("id").toString());
    Boolean urgente = Boolean.valueOf(params.get("urgente").toString());

    // Se alguém enviou "true" como "S" já era.
    // Se "id" vier nulo, explode aqui.
    // Se a chave vier como "clienteId" em outro ponto, não funciona.

    return servico.executar(operacao, clienteId, urgente);
}


O compilador para de ajudar cedo. E a validação passa a ser uma colcha de retalhos em runtime.



32.2 Cheiro técnico associado

Esse padrão conversa diretamente com smells conhecidos:


	Long Parameter List disfarçado

	Primitive Obsession (muito dado cru, pouca modelagem)

	Data Clumps (os mesmos campos reaparecendo juntos em vários lugares)



Na prática, você troca uma assinatura verbosa por acoplamento implícito: todo mundo precisa “saber de cabeça” os nomes mágicos das chaves.



32.3 Exemplo didático de evolução


32.3.1 Versão POG

public void criarBoleto(Map<String, Object> map) {
    String nome = (String) map.get("nome");
    String documento = (String) map.get("doc");
    BigDecimal valor = new BigDecimal(map.get("valor").toString());
    String vencimento = (String) map.get("dataVenc");

    // várias conversões, vários riscos silenciosos
}




32.3.2 Versão com contrato explícito

public record CriarBoletoRequest(
    String nome,
    String documento,
    BigDecimal valor,
    LocalDate dataVencimento
) {}

public void criarBoleto(CriarBoletoRequest req) {
    // Aqui o compilador ajuda
    // e o contrato fica autoexplicativo
}


Benefícios imediatos:


	tipagem forte

	documentação natural na assinatura

	erro detectado antes da produção

	teste mais simples e legível






32.4 Por que times continuam usando Map genérico

Motivos reais, e não caricatos:


	integração com payload dinâmico/legado

	tentativa de evitar mudanças em cadeia

	medo de criar classes “demais”

	pressão de prazo



Ou seja: o padrão não nasce de burrice, nasce de contexto ruim. O problema é quando ele vira decisão padrão para tudo.



32.5 Como usar sem virar caos

Se precisar usar Map por fronteira técnica (por exemplo, parser de payload desconhecido), faça contenção:


	converta para objeto tipado o mais cedo possível

	valide presença e tipo das chaves logo na entrada

	nunca propague Map cru pela regra de negócio

	centralize mapeamento em um único ponto



Assim você transforma o quarto escuro em corredor iluminado.



32.6 Resumo POG

Black Cat In A Dark Room é irresistível no dia de entrega porque parece flexível. Só que flexibilidade sem contrato cobra caro na manutenção.

Em linguagem POGráfica: é uma mochila sem divisória. Cabe tudo. Você só não acha nada quando precisa, principalmente em produção às 17h58 de sexta-feira.





33 Mega Zord

O Mega Zord e o padrao da superfuncao: um metodo gigante que concentra multiplas responsabilidades para “facilitar manutencao”. Em vez de modularizar, funde tudo em uma unidade colossal.

No discurso: centralizacao. Na pratica: acoplamento total.


33.1 Caracteristicas classicas


	centenas ou milhares de linhas em um unico metodo

	muitos if, switch e variaveis de controle

	efeitos colaterais em banco, arquivo, API e tela no mesmo fluxo

	baixa cobertura de teste por medo de tocar no bloco



Quando um metodo exige mapa mental para ser lido, o Mega Zord ja atingiu forma completa.



33.2 Exemplo didatico (versao POG)

public Resultado processarTudo(Pedido pedido, Usuario usuario, Map<String, Object> cfg) {
    // valida entrada
    // calcula imposto
    // aplica desconto
    // grava banco
    // envia email
    // chama API externa
    // gera log
    // atualiza cache
    // devolve resposta
    // 800 linhas depois...
    return resultado;
}


O problema nao e tamanho por si so. E mistura de motivos de mudanca. Uma regra fiscal muda por motivo A. O email muda por motivo B. Estao presos no mesmo bloco.



33.3 Por que times criam Mega Zord


	evolucao incremental sem refatoracao

	pressa para encaixar regra nova em ponto “que ja funciona”

	baixa confianca em extrair componentes

	ausencia de ownership claro do modulo



A cada sprint, entra “so mais um if”. Em um ano, nasce a criatura.



33.4 Efeito colateral


	regressao frequente

	review superficial (arquivo grande desencoraja analise profunda)

	dependencia de “guardiao do modulo”

	onboarding lento



O sistema fica robusto para quem criou e hostil para o resto da equipe.



33.5 Exemplo de decomposicao minima

public Resultado processarTudo(Pedido pedido, Usuario usuario, Map<String, Object> cfg) {
    validarEntrada(pedido, usuario);
    Valores valores = calcularValores(pedido, cfg);
    PersistenciaOut persistencia = persistirPedido(pedido, valores);
    integrarServicosExternos(persistencia);
    notificarPartes(persistencia);
    return montarResultado(persistencia);
}


Ainda e um fluxo central, mas com fronteiras internas claras. Isso ja permite teste por etapa e reduz risco de alteracao.



33.6 Estrategia pragmatica de reducao


	mapear secoes logicas no metodo gigante

	extrair uma secao por vez para metodo privado

	adicionar testes de regressao antes/depois da extracao

	mover etapas estaveis para classes dedicadas



Sem reescrita completa. Sem promessa de refatoracao epica.



33.7 Resumo POG

Mega Zord e poderoso para entrega imediata e aterrorizante para evolucao sustentavel. Quanto mais cresce, mais caro fica tocar nele.

No sotaque POG: e juntar todos os fios do painel num unico disjuntor e comemorar que “agora ta centralizado”.





34 THUNDER MEGA ZORD

O Thunder Mega Zord e a fusao entre duas potencias da gambiarra: metodo gigantesco + contrato opaco com Map de entrada e Object[] de saida. E a tempestade perfeita do acoplamento.

/**
 * Processa
 *
 * @param parametros
 * @return
 * @throws Throwable
 */
public static Object[] processar(Map parametros) throws Throwable {
    // Aí é aquilo, mermão...
    // ...
    // ...
    return processado;
}


A assinatura nao diz quase nada. So promete incerteza com confianca.


34.1 Como identificar


	Map sem tipo para entrada complexa

	Object[] com indices sem semantica

	throws amplo (Throwable/Exception) para tudo

	javadoc generico sem contrato util



Quando a documentacao diz “Processa” e o retorno e Object[], voce nao tem API: voce tem adivinhacao.



34.2 Exemplo didatico de risco

Object[] retorno = processar(params);
String status = (String) retorno[0];
BigDecimal total = (BigDecimal) retorno[1];
Date data = (Date) retorno[2];


Se alguem mudar a ordem interna para [total, status, data], o compilador nao reclama. O bug aparece em runtime, geralmente em producao.



34.3 Por que esse padrao surge


	metodo legado cresceu sem contrato formal

	tentativa de evitar criacao de classes de entrada/saida

	integracao rapida entre equipes sem alinhamento de tipos

	“nao mexe na assinatura que quebra tudo”



Em ambientes de prazo extremo, e compreensivel. Em ambiente de manutencao continua, e erosao programada.



34.4 Versao didatica mais segura

public record ProcessarRequest(Long clienteId, BigDecimal valor, boolean urgente) {}
public record ProcessarResponse(String status, BigDecimal total, LocalDate dataProcessamento) {}

public ProcessarResponse processar(ProcessarRequest req) {
    // regra aqui
    return new ProcessarResponse("OK", req.valor(), LocalDate.now());
}


Agora:


	contrato e autoexplicativo

	compilador ajuda

	mudanca de campo exige ajuste explicito

	teste fica legivel





34.5 Migracao incremental possivel


	manter assinatura antiga como adaptador temporario

	converter Map para request tipado internamente

	devolver response tipado e mapear para Object[] apenas no adaptador

	migrar consumidores gradualmente



Assim voce moderniza sem quebrar tudo de uma vez.



34.6 Resumo POG

Thunder Mega Zord entrega flexibilidade instantanea e debito estrutural de longo prazo. Ele parece universal porque aceita tudo e devolve qualquer coisa.

No evangelho da TelePOG: se nao souber diagnosticar, reinicia. Se continuar ruim, culpa a internet e abre outro chamado.



34.7 Mini checklist de mitigacao

Contrato opaco precisa de quarentena: converta entradas e saidas genericas em objetos tipados na fronteira do metodo. Mesmo que internamente continue legado por um tempo, essa adaptacao reduz risco imediato e prepara migracao segura dos consumidores.





35 Controller Confusion

O Controller Confusion é a evolução natural do MVC cansado. No discurso, o projeto ainda “usa camadas”. No código real, o controller virou templo monolítico: valida, transforma, persiste, chama API externa, gera relatório e decide mensagem de tela.

É o padrão VCC: View/Controller Confusion. Em estágio avançado, vira CCC: Chaotic Controller Confusion.


35.1 De onde isso vem

Esse padrão quase sempre nasce em projeto com uma mistura de:


	prazo curto com escopo longo

	time mudando frequentemente

	ausência de limites claros entre camadas

	cultura de “só mais esse if aqui no endpoint”



No início, parece uma economia. Você evita criar serviço, evita DTO, evita caso de uso. Só que cada economia dessas vira dívida semântica.

Com o tempo, o controller acumula responsabilidades demais e vira equivalente ao anti-pattern conhecido como God Object: uma entidade central que conhece tudo e acopla tudo.



35.2 Exemplo didático (Controller Confusion clássico)

@PostMapping("/pedidos")
public ResponseEntity<?> criar(@RequestBody Map<String, Object> body) {
    try {
        // 1) Validação de entrada
        if (body.get("clienteId") == null) {
            return ResponseEntity.badRequest().body("clienteId obrigatório");
        }

        // 2) Regra de negócio direto no controller
        BigDecimal total = new BigDecimal(body.get("total").toString());
        if (total.compareTo(BigDecimal.ZERO) <= 0) {
            return ResponseEntity.badRequest().body("total inválido");
        }

        // 3) Persistência direto aqui
        PedidoEntity pedido = new PedidoEntity();
        pedido.setClienteId(Long.parseLong(body.get("clienteId").toString()));
        pedido.setTotal(total);
        pedidoRepository.save(pedido);

        // 4) Integração externa também aqui
        String token = authClient.login("usuario", "senha");
        freteClient.calcular(token, pedido.getId(), pedido.getTotal());

        // 5) Formatação de resposta
        Map<String, Object> resp = new HashMap<>();
        resp.put("id", pedido.getId());
        resp.put("status", "CRIADO");
        return ResponseEntity.ok(resp);
    } catch (Exception e) {
        // 6) Tratamento genérico sem contexto
        return ResponseEntity.internalServerError().body("erro inesperado");
    }
}


Repare na sobrecarga cognitiva. Um único método mistura várias preocupações que mudam por motivos diferentes. Resultado: qualquer ajuste simples vira cirurgia de alto risco.



35.3 Sinais de que virou confusão


	controller com centenas ou milhares de linhas

	mesmo endpoint mexendo em banco, fila, arquivo e API externa

	testes de controller gigantes tentando cobrir regra de negócio

	bugs regressivos frequentes por efeitos colaterais não intencionais



Isso bate diretamente com smells clássicos de engenharia de software: long method, long parameter list, divergent change e shotgun surgery.



35.4 Versão didática com separação mínima

@PostMapping("/pedidos")
public ResponseEntity<?> criar(@RequestBody CriarPedidoRequest req) {
    try {
        ResultadoCriacaoPedido resultado = criarPedidoUseCase.executar(req);
        return ResponseEntity.status(201).body(resultado);
    } catch (ValidacaoException e) {
        return ResponseEntity.badRequest().body(e.getMessage());
    } catch (IntegracaoException e) {
        return ResponseEntity.status(502).body("Falha em integração externa");
    }
}

public class CriarPedidoUseCase {
    public ResultadoCriacaoPedido executar(CriarPedidoRequest req) {
        // validação e regras aqui, de forma testável
        // persistência via gateway/repositório
        // integrações encapsuladas
        // retorno explícito
    }
}


Aqui o controller volta ao papel dele: orquestrar I/O HTTP e traduzir resultado para resposta. A regra deixa de ficar refém de framework web.



35.5 Como reduzir sem reescrever tudo

Abordagem pragmática, sprint por sprint:


	escolha um endpoint crítico (o mais alterado)

	extraia uma regra para um serviço/caso de uso

	mantenha assinatura antiga para não quebrar cliente

	adicione teste no caso de uso extraído

	repita até o controller emagrecer



Isso evita refatoração épica e reduz risco operacional.



35.6 Resumo POG

Controller Confusion é confortável no curto prazo, cruel no médio e impagável no longo. É o padrão ideal para gerar chamados em série e sustentar o emprego de meio time de sustentação.

Se a meta é continuar entregando sem criar um cemitério de endpoint, trate controller como fronteira e não como depósito. Caso contrário, cedo ou tarde, o MVC vira apenas uma lenda oral contada para estagiário.





36 No More Layers

No No More Layers, arquitetura em camadas e considerada burocracia. Tudo acontece no mesmo lugar, normalmente na tela/controlador: validacao, regra de negocio, acesso a dados e formatacao de resposta.

A promessa e velocidade. O custo e acoplamento total.


36.1 Exemplo classico

private void botaoSalvar_Click(Object sender, EventArgs e) {
    // 1) le campos da tela
    // 2) valida regra
    // 3) monta SQL
    // 4) executa no banco
    // 5) monta mensagem de retorno
    // 6) atualiza grid
}


Tudo numa unica rotina de interface. Parece eficiente enquanto o sistema e pequeno. Quando cresce, cada alteracao de regra exige tocar na tela.



36.2 Consequencias praticas


	baixa reutilizacao de regra de negocio

	testes automatizados dificeis

	dependencia forte de framework de UI

	regressao em cascata a cada ajuste visual



Quando a troca de banco exige alterar formulario, a separacao de responsabilidades ja morreu.



36.3 Onde esse padrao e comum


	legados desktop (Delphi, VB6, WinForms)

	sistemas web antigos com script + SQL inline

	projetos que cresceram sem desenho arquitetural

	times pressionados por entregas imediatas



Nao e um problema de tecnologia especifica. E um problema de limite de responsabilidade.



36.4 Exemplo didatico de separacao minima

// camada de interface
public Resultado salvarPedido(FormPedido form) {
    CriarPedidoInput input = mapear(form);
    return criarPedidoUseCase.executar(input);
}

// caso de uso
public Resultado executar(CriarPedidoInput input) {
    validar(input);
    Pedido pedido = Pedido.novo(input);
    repositorio.salvar(pedido);
    return Resultado.sucesso(pedido.getId());
}


Aqui a tela para de saber SQL e regra fiscal. Ela apenas traduz entrada/saida.



36.5 Correcao gradual


	escolher um fluxo com muita manutencao

	extrair regra para servico/caso de uso

	manter UI como adaptador

	repetir por partes sem reescrita global



Abordagem incremental reduz risco de parada total.



36.6 Beneficio real de manter camadas


	mudanca de regra sem mexer na tela

	possibilidade de reaproveitar fluxo em API/job

	testes de negocio sem subir interface

	codigo mais legivel para onboarding



Arquitetura em camadas nao e luxo academico. E estrategia para reduzir custo de mudanca.



36.7 Resumo POG

No More Layers e gostoso no curto prazo: menos arquivos, mais entrega rapida. No longo prazo, transforma cada ajuste simples em operacao delicada.

Na linguagem POG: e cozinhar, atender cliente e lavar prato no mesmo fogao. Da para fazer. Escalar e outra historia.



36.8 Mini checklist de mitigacao

Se a tela conhece SQL, regra fiscal e formato de resposta externa, a camada de interface ja esta sobrecarregada. Comece separando apenas uma responsabilidade por sprint. Em poucos ciclos, o ganho de teste e previsibilidade aparece sem precisar pausar o roadmap.





37 Db Is Our God

No Db Is Our God, o banco de dados deixa de ser camada de persistencia e vira centro do universo: regra de negocio, orquestracao de fluxo, validacao, transformacao, geracao de relatorio e ate HTML.

Tambem conhecido como In DB We Trust.


37.1 Dogmas do padrao

Tudo vai para o banco:


	dados e arquivos

	imagens e logs

	regra de negocio em procedure

	tratamento de erro em trigger

	composicao de resposta em SQL



A promessa e “centralizar para padronizar”. O risco e concentrar complexidade e gargalo no mesmo ponto.



37.2 Exemplo didatico

CREATE PROCEDURE processar_pedido(
    IN p_cliente_id BIGINT,
    IN p_valor DECIMAL(10,2)
)
BEGIN
    -- valida cliente
    -- calcula imposto
    -- grava pedido
    -- atualiza estoque
    -- chama funcao de notificacao
    -- retorna mensagem formatada
END;


Procedure grande pode funcionar bem em cenario especifico. O problema surge quando ela vira lugar padrao para toda regra, sem fronteira clara entre dominio e persistencia.



37.3 Sintomas de culto ao banco


	alteracao de regra exige deploy de script + janela de manutencao

	time de aplicacao nao entende mais o fluxo completo

	logica espalhada entre app e SQL sem contrato

	dificuldade de testar regra fora do ambiente de banco



Quando o dominio mora em trigger, a aplicacao vira um cliente passivo de eventos invisiveis.



37.4 Por que isso acontece


	historico forte de time DBA-centric

	performance local excelente em consultas complexas

	legado construido antes de camada de servico madura

	tentativa de garantir consistencia “na marra”



Existe valor real em banco: transacao, integridade referencial, constraints, consulta. O excesso e que vira anti-pattern.



37.5 Exemplo de equilibrio pragmatico


	banco cuida de integridade e consulta eficiente

	aplicacao cuida de caso de uso e orquestracao

	procedures ficam para cenarios realmente justificados



public void criarPedido(CriarPedidoInput input) {
    validarRegras(input);      // regra de negocio
    Pedido pedido = mapper.map(input);
    repositorio.salvar(pedido); // persistencia
}


No banco:

ALTER TABLE pedido
ADD CONSTRAINT chk_valor_positivo CHECK (valor > 0);


Cada camada cumpre seu papel.



37.6 Estrategia de migracao


	mapear procedures criticas por dominio

	separar validacoes de negocio das constraints de integridade

	expor regras em camada de aplicacao com testes

	manter no banco o que e estrutural e transacional



Sem guerra santa. Com criterio.



37.7 Resumo POG

Db Is Our God da sensacao de controle total, mas centraliza risco e reduz flexibilidade de evolucao. Banco e essencial, mas nao precisa ser divindade onipotente do sistema.

No catecismo POGramador: quando tudo e milagre de procedure, qualquer manutencao vira peregrinacao com janela de madrugada.





38 Snow White Returns

O Snow White Returns celebra multiplos pontos de retorno em funcoes gigantes. A ideia original era simplificar casos locais. O uso extremo transforma fluxo em labirinto.

POrque um return claro quando voce pode ter sete, doze ou vinte e um?


38.1 Como o padrao se forma


	metodo cresce sem refatoracao

	cada condicao ganha um return de emergencia

	caminhos de saida se multiplicam sem estrategia

	leitura sequencial deixa de representar fluxo real



Em funcoes pequenas, early return pode melhorar legibilidade. Em funcoes enormes e sem estrutura, vira desorientacao.



38.2 Exemplo didatico (caotico)

public Resultado processar(Pedido pedido) {
    if (pedido == null) return Resultado.erro("pedido nulo");
    if (pedido.getItens().isEmpty()) return Resultado.erro("sem itens");

    if (!estoqueDisponivel(pedido)) return Resultado.erro("sem estoque");

    if (pedido.isRetirada()) {
        if (!validarLoja(pedido)) return Resultado.erro("loja invalida");
        return Resultado.ok("retirada liberada");
    }

    if (pedido.isEntrega()) {
        if (!validarEndereco(pedido)) return Resultado.erro("endereco invalido");
        if (pedido.getFrete() == null) return Resultado.erro("frete ausente");
        return Resultado.ok("entrega liberada");
    }

    return Resultado.erro("tipo de entrega desconhecido");
}


Aqui ainda parece legivel porque e curto. Agora imagine isso com 700 linhas e efeitos colaterais entre condicoes.



38.3 Risco principal


	ponto de saida demais dificulta rastrear estado

	logging e auditoria ficam inconsistentes

	manutencao adiciona novos retornos sem revisar os antigos

	mudanca de regra quebra caminhos esquecidos



No fim, o bug nao esta em um return especifico. Esta na falta de desenho do fluxo.



38.4 Versao mais organizada

public Resultado processar(Pedido pedido) {
    validarEntrada(pedido);

    if (pedido.isRetirada()) {
        return processarRetirada(pedido);
    }

    if (pedido.isEntrega()) {
        return processarEntrega(pedido);
    }

    return Resultado.erro("tipo de entrega desconhecido");
}

private Resultado processarRetirada(Pedido pedido) {
    validarLojaRetirada(pedido);
    return Resultado.ok("retirada liberada");
}

private Resultado processarEntrega(Pedido pedido) {
    validarDadosEntrega(pedido);
    return Resultado.ok("entrega liberada");
}


Ainda existem retornos multiplos, mas cada funcao tem escopo pequeno e intencao clara.



38.5 Como corrigir sem guerra


	medir funcoes com maior complexidade ciclomática

	extrair blocos por responsabilidade

	manter retornos apenas onde aumentam clareza

	padronizar log de entrada/saida por fluxo



Nao e sobre proibir return cedo. E sobre evitar floresta de saidas em metodo sem fronteira.



38.6 Resumo POG

Snow White Returns e divertido enquanto o autor lembra o caminho de cada saida. Quando o contexto muda, vira castelo sem planta baixa.

No idioma POG: cada return extra e uma porta secreta. Bom para quem construiu. Terrivel para quem herdou.



38.7 Mini checklist de mitigacao

Retornos multiplos so sao problema quando escondem complexidade acidental. Se cada retorno estiver em funcao pequena e com intencao clara, tudo bem. O anti-pattern surge quando os retornos viram atalho para evitar modelagem do fluxo principal.





39 Conclusões

Chegamos ao fim deste tomo maldito. Se voce leu ate aqui, ha duas possibilidades:


	voce realmente se interessa por engenharia de software

	voce esta fugindo de uma task com prazo suicida



Nos dois casos, parabens. Voce demonstrou coragem.


39.1 O que este livro tentou mostrar

A Programacao Orientada a Gambiarra nao e apenas uma piada interna da area. Ela e um fenomeno real, repetivel e sistemico.

POG nao nasce so de “dev ruim”. Ela nasce do encontro entre:


	pressao de prazo

	processo torto

	contexto incompleto

	incentivo desalinhado

	tomada de decisao sob estresse



Quando esses elementos se alinham, ate equipe boa produz artefardo.



39.2 As quatro grandes licoes


39.2.1 1. Gambiarra e inevitavel

Todo sistema vivo acumula improviso. Isso nao e falha moral. E caracteristica de software em producao.

Negar essa realidade so piora a qualidade das decisoes.



39.2.2 2. Nem toda POG e igual

Existe gambiarra tatica, conscientemente aplicada para conter incidente. Existe gambiarra estrutural, reproduzida por meses sem plano de saida.

Confundir as duas e o caminho mais rapido para virar refem do proprio codigo.



39.2.3 3. Nomear padrao aumenta lucidez

Quando voce chama algo de Controller Confusion, Zipomatic Versioning ou Exception Success, deixa de discutir no campo da opiniao e passa a discutir no campo da engenharia.

Nome reduz neblina.



39.2.4 4. Saida sempre e gradual

Projeto real nao aceita reforma espiritual instantanea. Quem promete “refatorar tudo” em uma sprint esta vendendo fanfic.

A evolucao sustentavel vem de pequenos movimentos:


	mapear pontos criticos

	reduzir risco incrementalmente

	proteger fluxo de negocio

	melhorar sem parar entrega






39.3 O paradoxo do POGramador

Quanto mais experiente, menos inocente. Quanto mais conhecimento, menos dogma. Quanto mais disciplina, menos heroicismo vazio.

O POGramador maduro nao e o que nunca faz gambiarra. E o que sabe exatamente quando, por que e ate quando vai conviver com ela.



39.4 Sobre culpa e responsabilidade

Se voce se reconheceu em varios capitulos, relaxe: todos nos ja passamos por isso.

A diferenca entre amador e profissional nao esta em nunca errar. Esta em:


	reconhecer o erro cedo

	assumir o impacto

	aprender com padrao recorrente

	nao terceirizar culpa para “o sistema”



Redirecao Tangencial diverte por cinco minutos. Responsabilidade tecnica sustenta carreira por decadas.



39.5 Um compromisso para levar daqui

Se este livro precisasse terminar com um pacto simples, seria este:

Continue entregando. Mas nunca entregue no automatico.

Pergunte sempre:


	qual problema estou resolvendo agora?

	qual problema estou criando para depois?

	quem vai pagar essa conta futura?



Essas tres perguntas, repetidas com honestidade, ja evitam metade das pogs catastroficas que assombram times inteiros.



39.6 Encerramento

POG e uma arte dominada por muitos, confessada por poucos e negada por quase todos.

Que voce saia deste livro com mais repertorio, mais senso de realidade e menos ilusao de pureza arquitetural.

E que Lady Murphy siga ao seu lado, nao como maldicao, mas como lembrete:

se algo pode dar errado, alguem vai dar deploy sexta-feira 18h.

POGae.





40 Bibliografia Consolidada

Esta seção consolida todas as referências citadas ao longo do livro, organizadas por capítulo.


40.1 O que é POG?

[^ref]



40.2 História da POG

[^ref]



EPUB/media/capa.jpg
PROGRAMAGAO

ORIENTADA A GAMBIARRA

’.

Como garantir que o inferno
seja uma amostra gratis do seu trabalho!

Josenaldo Matos





