
Programação Orientada a Gambiarra
Um Guia Definitivo sobre a Arte da Gambiarra no Desenvolvimento de

Software

Josenaldo Matos Filho

2024

ii

Sumário

1 Agradecimentos 1

2 Introdução 3

3 O que é POG? 5
3.1 Sinônimos de Gambiarra . 6
3.2 Programação Orientada a Gambiarra . 8
3.3 Referências . 8
3.4 Notas . 8

4 História da POG 9
4.1 O ser humano é uma máquina de reconhecer padrões 9
4.2 Não basta reconhecer, tem que espalhar . 10
4.3 Não basta saber contar ovelhas . 11
4.4 Precisamos contar o tempo . 12
4.5 O calendário romano . 12
4.6 O calendário Juliano . 14
4.7 O calendário Gregoriano . 14
4.8 Chama o Ratinho . 15
4.9 Referências . 16
4.10Notas . 16

5 Requisitos da POG 17
5.1 As dimensões dos Requisitos da POG . 17
5.2 Notas . 18

6 Dimensão Humana 19
6.1 Equipe Apática . 19
6.2 Profissionais Superestimados . 20
6.3 Arquiteto MacGyver . 20
6.4 Gerente Sem Noção . 21
6.5 Cliente Corrosivo . 21
6.6 Usuário Abrasivo . 22
6.7 Intrometido Inepto . 22
6.8 Dobrador de problemas . 23
6.9 Notas . 24

7 Dimensão Tecnológica 25
7.1 Tecnologia Inadequada . 25
7.2 Desconhecimento Técnico . 26
7.3 Obsolescência Adquirida . 26
7.4 Rigidez Arquitetural . 27

iii

iv SUMÁRIO

7.5 Projeto Malamanhado . 28
7.6 Notas . 28

8 Dimensão Estrutural 29

9 Dimensão Processual 35
9.1 Como reduzir a Dimensão Processual sem matar a produtividade 40
9.2 Encerramento processual . 40

10Dimensão Temporal 43
10.1O próprio tempo . 43
10.2Os quatro Fs . 44
10.3Janela de caos combinada . 46
10.4Como manter a POG sob controle (sem virar monge da engenharia) 47
10.5Encerramento temporal . 47

11Príncípios da POG 49
11.1O conjunto canonico . 49
11.2Como esses principios operam . 50
11.3Principios, Tecnicas e Patterns . 50
11.4O compromisso do POGramador . 51

12Técnicas da POG 53
12.1O que e uma tecnica POG . 53
12.2Do principio para o teclado . 53
12.3O arsenal tecnico desta secao . 54
12.4Niveis de maestria . 54
12.5Como ler esta parte do livro . 54
12.6Encerramento da abertura . 55

13Zipomatic versioning 57
13.1Como funciona o ritual . 57
13.2Exemplo do mundo real . 57
13.3Sinais de que o Zipomatic dominou . 57
13.4Por que a tecnica surge . 58
13.5Exemplo didatico de diferenca . 58
13.6Impacto tecnico e humano . 58
13.7Como sair sem trauma . 59
13.8Resumo POG . 59

14Monkey Patching 61
14.1Como aparece em projeto real . 61
14.2Exemplo didatico (JavaScript) . 61
14.3Exemplo didatico (Python) . 62
14.4Quando a tecnica pode ser aceitavel . 62
14.5Sinais de abuso . 62
14.6Mitigacao pragmatica . 62
14.7Resumo POG . 63

15Incremental patching debug 65
15.1Ritual de aplicacao . 65
15.2Exemplo classico . 65
15.3O que quase nunca entra nesse fluxo . 66
15.4Por que isso e comum . 66
15.5Exemplo didatico . 66

SUMÁRIO v

15.6Risco acumulado . 66
15.7Como evoluir sem parar entrega . 67
15.8Resumo POG . 67

16My precious 69
16.1Sinais classicos . 69
16.2Por que isso acontece . 69
16.3Exemplo do efeito colateral . 69
16.4Exemplo didatico de comportamento . 70
16.5O mito da protecao . 70
16.6Como desmontar o padrao sem conflito . 70
16.7Resumo POG . 71

17Psychoding 73
17.1Etapas do transe . 73
17.2Exemplo classico . 73
17.3Por que Psychoding pega tao facil . 73
17.4Sinais de que a tecnica virou rotina . 74
17.5Exemplo didatico de uso consciente . 74
17.6Como aproveitar pesquisa sem cair em Psychoding 74
17.7Risco de longo prazo . 75
17.8Resumo POG . 75

18Gambi Design Patterns 77
18.1O que sao Gambi Design Patterns . 77
18.2Por que catalogar a desgracenca . 77
18.3Estrutura dos capitulos desta secao . 78
18.4Do accidental para o institucional . 78
18.5Relacao com Tecnicas e Principios . 78
18.6Uma nota de honestidade . 78
18.7Encerramento da abertura . 79

19WTF / WTH / QPE 81
19.1A assinatura da entidade . 81
19.2Como esse padrao aparece . 81
19.3Causa tipica . 81
19.4Exemplo didatico . 82
19.5Como evitar o efeito “codigo magico” . 82
19.6O perigo social do QPE . 82
19.7Correcao pragmatica . 83
19.8Resumo POG . 83

20RCP Pattern (Reuse by Copy and Paste) 85
20.1Principio da Reflexao Reprodutoria . 85
20.2Exemplo didatico . 85
20.3Smells associados . 86
20.4Por que times caem nisso . 86
20.5Evolucao didatica . 86
20.6Estrategia pratica para legado . 87
20.7Resumo POG . 87

21Hardcoded Data 89
21.1Exemplo classico . 89
21.2Sinais de que o padrao tomou conta . 89
21.3Por que ele aparece . 89

vi SUMÁRIO

21.4Exemplo didatico de evolucao . 90
21.5Impactos de negocio . 90
21.6Correcao sem trauma . 91
21.7Resumo POG . 91

22Forceps 93
22.1Exemplo classico . 93
22.2Como reconhecer o Forceps no codigo . 93
22.3Por que o time adota isso . 94
22.4Impactos no medio prazo . 94
22.5Exemplo didatico de abordagem melhor . 94
22.6Estrategia pragmatica de correcao . 95
22.7Resumo POG . 95

23Ostrich Syndrome Skill 97
23.1Forma ritualistica . 97
23.2Sinais no projeto . 97
23.3Por que acontece . 98
23.4Exemplo didatico . 98
23.5Risco acumulado . 98
23.6Como tratar sem paralisar entrega . 99
23.7Resumo POG . 99
23.8Mini checklist de mitigacao . 99

24Nonsense Flag Nonsense Naming 101
24.1Efeito semantico . 101
24.2Exemplo didatico . 102
24.3Por que o time cai nisso . 102
24.4Nonsense Flag: o primo perigoso . 102
24.5Abordagem pragmatica . 103
24.6Resumo POG . 103
24.7Mini checklist de mitigacao . 103

25Commented Code Implementation Comments Forever 105
25.1Exemplo classico . 105
25.2Problemas que esse padrao cria . 106
25.3Quando isso comeca . 106
25.4Exemplo didatico de alternativa . 106
25.5Comentario bom x comentario ruim . 107
25.6Estrategia pragmatica de limpeza . 107
25.7Resumo POG . 107
25.8Mini checklist de mitigacao . 107

26Reinvented Square Wheel Helper 109
26.1Exemplo classico . 109
26.2Sintomas do padrao . 109
26.3Por que isso acontece . 110
26.4Exemplo didatico . 110
26.5Custo oculto . 110
26.6Correcao pragmatica . 111
26.7Resumo POG . 111
26.8Mini checklist de mitigacao . 111

27You Shall Not Pass 113
27.1Sintoma clássico . 113

SUMÁRIO vii

27.2Por que isso é perigoso . 113
27.3Exemplo didático (controle de granularidade) 114
27.4Quando usar captura ampla, então? . 115
27.5Estratégia de correção gradual . 115
27.6Resumo POG . 115

28Perfectness Execution Bulletproof 117
28.1Como esse padrão se instala . 117
28.2Exemplo didático (problema real disfarçado) 118
28.3Efeito colateral em cadeia . 118
28.4Versão didática melhor (sem perder UX) . 118
28.5Quando o Bulletproof já está em produção . 119
28.6Resumo POG . 119

29Exception Success 121
29.1Como reconhecer esse padrão . 121
29.2Exemplo didático (versão POG) . 121
29.3Por que isso aparece em projeto real . 122
29.4Impactos técnicos . 123
29.5Exemplo didático (versão menos caótica) . 123
29.6Resumo POG . 124

30String Sushiman 125
30.1Exemplo classico . 125
30.2Sinais de maturidade Sushiman . 125
30.3Por que aparece . 126
30.4Exemplo didatico . 126
30.5Impacto operacional . 126
30.6Mitigacao pragmatica . 126
30.7Resumo POG . 127
30.8Mini checklist de mitigacao . 127

31Sleeper Human Factor 129
31.1Onde esse padrao aparece . 129
31.2Motivos reais para adocao . 130
31.3Exemplo didatico . 130
31.4Impacto tecnico . 130
31.5Como remover com baixo risco . 131
31.6Sobre UX real . 131
31.7Resumo POG . 131

32Black Cat In A Dark Room 133
32.1Anatomia da gambiarra . 133
32.2Cheiro técnico associado . 134
32.3Exemplo didático de evolução . 134
32.4Por que times continuam usando Map genérico 135
32.5Como usar sem virar caos . 135
32.6Resumo POG . 135

33Mega Zord 137
33.1Caracteristicas classicas . 137
33.2Exemplo didatico (versao POG) . 137
33.3Por que times criam Mega Zord . 138
33.4Efeito colateral . 138
33.5Exemplo de decomposicao minima . 138

viii SUMÁRIO

33.6Estrategia pragmatica de reducao . 138
33.7Resumo POG . 139

34THUNDER MEGA ZORD 141
34.1Como identificar . 141
34.2Exemplo didatico de risco . 142
34.3Por que esse padrao surge . 142
34.4Versao didatica mais segura . 142
34.5Migracao incremental possivel . 142
34.6Resumo POG . 143
34.7Mini checklist de mitigacao . 143

35Controller Confusion 145
35.1De onde isso vem . 145
35.2Exemplo didático (Controller Confusion clássico) 145
35.3Sinais de que virou confusão . 146
35.4Versão didática com separação mínima . 147
35.5Como reduzir sem reescrever tudo . 147
35.6Resumo POG . 147

36No More Layers 149
36.1Exemplo classico . 149
36.2Consequencias praticas . 149
36.3Onde esse padrao e comum . 150
36.4Exemplo didatico de separacao minima . 150
36.5Correcao gradual . 150
36.6Beneficio real de manter camadas . 150
36.7Resumo POG . 151
36.8Mini checklist de mitigacao . 151

37Db Is Our God 153
37.1Dogmas do padrao . 153
37.2Exemplo didatico . 153
37.3Sintomas de culto ao banco . 154
37.4Por que isso acontece . 154
37.5Exemplo de equilibrio pragmatico . 154
37.6Estrategia de migracao . 155
37.7Resumo POG . 155

38Snow White Returns 157
38.1Como o padrao se forma . 157
38.2Exemplo didatico (caotico) . 157
38.3Risco principal . 158
38.4Versao mais organizada . 158
38.5Como corrigir sem guerra . 159
38.6Resumo POG . 159
38.7Mini checklist de mitigacao . 159

39Conclusões 161
39.1O que este livro tentou mostrar . 161
39.2As quatro grandes licoes . 161
39.3O paradoxo do POGramador . 162
39.4Sobre culpa e responsabilidade . 162
39.5Um compromisso para levar daqui . 163
39.6Encerramento . 163

SUMÁRIO ix

40Bibliografia Consolidada 165
40.1O que é POG? . 165
40.2História da POG . 165

x SUMÁRIO

Capítulo 1

Agradecimentos

Há muitas pessoas a quem eu devo agradecer. Se eu fosse nomear todas aqui, isso seria
uma listagem maior que uma nota fiscal de quem comprou uma bala no supermercado.
Então, vou agradecer apenas algumas pessoas muito queridas.

A ordem de apresentação não implica em uma ordem de importância em minha vida. Até
porque nenhum de vocês é mais importante que minhas gatas Bugada e Lesada.

Primeiro, vou agradecer à minha família. Vocês fizeram um grande trabalho. Exceto, claro,
quando levaram 15 anos pra perceber que a criança com a cara colada na TV precisava
usar um óculos mais potente que o Telescópio Espacial James Web. E isso porque a família
me deu 2 TIAS ENFERMEIRAS MAIS MÍOPES DO QUE EU ! Já sabemos quem cabulou
as aulas de genética pra ir pro boteco. Mesmo assim, eu amo vocês!

Eu posso não acreditar em Deus, mas acredito em anjas, pq eu já conheci três: Luciana
Ribeiro Matos, minha irmã de faculdade; Elma dos Passos Rabello, minha primeira sogra
e mãe de rim; e Maria Teresa Lima (em memória), minha segunda sogra e saudosa compa-
nheira de papos malucos. Obrigado por me dedicarem tanto amor, apesar de minhas falhas
e imperfeições. Vocês me mostraram que esse mundo ainda vale a pena. Levarei vocês pra
sempre no meu coração. No rim não, porque o rim eu perco.

Um agradecimento especial à minha companheira, Cassiana, que trouxe a luz do amor de
volta àminha vida. E outro agradecimento aos nossos filhos Joseana, Cassinaldo, Jossinalna,
Cijomar e Prosongolôndia, que não nasceram ainda, por não tentarem me matar devido aos
nomes que vou por neles. Eu acho.

Nenhum obrigado aos bolsonaristas e antivacinas. A esses, eu não tenho nada o que agra-
decer. A esses, eu só desejo que peguem fungo de pneu de caminhão no símbolo químico
do cobre.

A todo mundo que acha que eu deveria citar aqui, mas não citei, eu usarei as palavras
de Bilbo Bolsista: Eu não conheço metade de vocês a metade do que gostaria; e gosto de
menos da metade de vocês a metade do que vocês merecem.

1

2 CAPÍTULO 1. AGRADECIMENTOS

Capítulo 2

Introdução

Saudações, POGramadores!

Sejamos sinceros… Você chegou a esse livro porque está cansado. Você deveria estar tra-
balhando, estudando, desenvolvendo o software que vai deixar seu chefe mais rico… Mas
você está de saco cheio e resolveu gastar seu tempo lendo sobre Gambiarras.

Bem, pode comemorar. Você está no lugar certo. Já pode tocar Aleluia no celular.

Aqui, você não vai aprender a resolver suas gambiarras. Pode tirar essa ilusão desse seu
coraçãozinho maltratado. Aqui, você vai aprender a abraçar o GLS (Gambi Life Style) de
vez.

Durante a leitura deste tomo sagrado, sua mente passará pelo mais avançado curso de
PNL (POGramação Neuro Linguiça), que capacitará você a identificar, utilizar e idealizar
as POGs que tornarão o inferno uma amostra grátis do seu trabalho.

O livro é dividido em 3 partes.

• Conceitos
• Técnicas
• Gambi Design Patterns

Na primeira parte desse livro, “Conceitos” navegaremos pelos principais conceitos ligados
à arte de criar Gambiarras.

O que é um POGramador? O que é uma Gambiarra? Quais o requisitos que um ambiente
deve atender para que a Gambiarra floresça? Quais princípios um POGramador deve ter
marcado no âmago de seu ser?

Diagrama de estrutura do livro {803x403} {caption: DIagrama sofisticado demonstranto
a estrutura do livro}

Figura 2.1: Diagrama de estrutura do livro {803x403} {caption: DIagrama sofisticado
demonstranto a estrutura do livro}

3

4 CAPÍTULO 2. INTRODUÇÃO

Na segunda parte, Técnicas, conheceremos as (rufem os tambores!) técnicas que constam
do arsenal de um POGramador.

Por fim, veremos a aplicação dessas técnicas na terceira parte, Gambi Design Patterns,
que é um catálogo dos principais padrões de projeto da desgracença.

Ao final deste livro, você, POGramador, terá uma caixa de ferramentas tão vasta na capa-
cidade de causar tragédias que saberá que o termo “Caixa de Pandora” só existe porque
você não nasceu antes. Se tivesse nascido, seria “Caixa de POGramador”.

Boa leitura e que Lady Murphy te acompanhe.

Capítulo 3

O que é POG?

Gambiarra.

Ao assumir o sacerdócio da área da POGramação, a palavra Gambiarra é cravada em nossos
cérebros e passa a fazer parte do nosso vocabulário.

Muito se discute sobre os benefícios e malefícios da Gambiarra. A maioria faz piada. E
muitos até tentam resistir. Inutilmente, claro. A Gambiarra torna-se uma parte importante
de nossas vidas, quer você queira ou não.

Mas, afinal, o que é uma Gambiarra?

Dentre os civis (aqueles que não comungam do conhecimento sagrado da POGramação), a
palavra Gambiarra quase sempre tem uma conotação ligada a adaptações ineficientes ou
soluções improvisadas pra problemas que exigem técnicas mais apuradas.

Uma acepçãomenos pejorativa emais objetiva é o uso desta palavra pra designar o conjunto
de lâmpadas em série, usado para iluminar uma área onde ocorrerá um evento, como uma
peça de teatro, uma festa junina ou um bacanal de pessoas sem um pingo de vergonha.

E dessa forma, é que você, jovem POGramador, deve ver a Gambiarra: como a luz que
ilumina o espetáculo que é o seu código!

“Por definição, a Gambiarra é aquilo que é de difícil concepção, de inesperada
execução para tornar fácil o uso de algo que sequer deveria existir.” [@Desciclo-
pedia2016]

Ou seja, a Gambiarra é a solução técnica planejadamente improvisada e resultante
de uma inspiração momentânea, com o intuito de resolver um problema complexo,
onde o uso de técnicas tradicionais incorrem em alto custo energético para o re-
solvedor.

A duração da gambiarra é limitada, devendo essa ser substituída, assim que possível, por
uma solução técnica convencional. Portanto, uma boa gambiarra tem, como tempo de

5

6 CAPÍTULO 3. O QUE É POG?

permanência, o valor mínimo Tg (Tempo da Gambiarra), sendo que Tg tende ao infinito.

Por ter baixo custo presente, seu custo futuro tende a ser ignorado pelo gambiarrizador, já
que esse custo certamente será assumido por terceiros. Portanto, a Gambiarra se mostra
extremamente vantajosa, o que justifica a sua utilização.

3.1 Sinônimos de Gambiarra

O termo Gambiarra possui vários sinônimos, que são usados nas mais diversas áreas. Em
sua maioria, os sinônimos são eufemismos, utilizados como forma de esconder, dos civis,
que uma Gambiarra está sendo usada, já que a mente primitiva do ser humano comum é
incapaz de perceber o brilhantismo dessa solução.

Dentre estes sinônimos, temos:

• ATI - Aparato Técnico Improvisado
• ATND - Artifício Técnico Não Documentado
• CPMF - Conserto Provisório Mas Funciona
• DAT - Dispositivo Alternativo Temporário
• ERR - Engenharia de Reparos Rápidos
• MASC - Medida Adaptativa à Situações Críticas
• MTEDM - Manutenção Técnica com Elementos Disponíveis no Momento
• MUTRETA - Método Único de Tratamento e Resolução de Erros Totalmente Adaptável
• REZA - Reestruturação Emergencial Zuada Auxiliar
• RTA - Recurso Técnico Avançado
• RTA - Recurso Tecnológico Alternativo
• RTDM - Recurso Técnico Disponível no Momento
• RTE - Recurso Técnico de Emergência
• RTI - Recurso Técnico Inteligente
• STCT - Solução Técnica de Cunho Temporário

No contexto da POGramação, temos também os seguintes sinônimos:

• ADP - Adaptação De Programador
• CACA - Código Avançado Completo e Adaptável
• CAGADA - Código Alternativo Gerador de Algoritmos Duramente Aplicáveis
• DADA - Deixa Assim, Depois Arrumo
• IST - Improvisation Solution Tabajara
• ITAC - Implementação Técnica Abstratamente Controversa
• RAP - Recurso Avançado de Programação
• TAPA - Técnica Alternativa de Programação Avançada

Podemos notar como o uso de siglas é comum na denominação da Gambiarra. Portanto, a
lógica é clara: se algo, na computação, é nomeado com uma sigla, provavelmente é uma
Gambiarra.

3.1. SINÔNIMOS DE GAMBIARRA 7

O exemplo mais notório dessa regra é o acrônimo recursivo GNU, que significa “GNU is
Not Unix”, e denota uma Gambiarra que se gambiarriza em si mesma.

Mas existe um termo que merece uma explicação adicional, devido às suas peculiaridades:
Marreta1.

3.1.1 Marreta

O termo “Marreta” é usado por quem associa o poder gambiarrizador à ferramentaMarreta,
que é usada no lugar de um martelo. O POGramador também associa o poder gambiarri-
zante ao deus Thor, que resolvia tudo na base do martelo.

A origem do termo está no ditado “Pra quem só sabe usar martelo, todo problema é prego”.

Obviamente que podemos discutir o porquê de não se usar o termo “Martelo”, mas o uso do
termo correto associado ao ditado é uma incoerência gambiarrística! A própria utilização
da marreta, no lugar do martelo, demonstra uma gambiarra verbal, o que fecha o ciclo
lógico da gambiarra numa metagambiarra.

3.1.2 Gambiarra em outras línguas

A gambiarra é um conceito universal. Não importa o país que você visite, sempre existe
uma criatura abençoada alterando alguma coisa, de forma improvisada, para que um pro-
pósito não planejado seja atingido ou algum reparo desejado, mas impossível, seja tornado
possível.

Sabendo disso, POGramadores bem informados compreendem que não precisam apenas
ter competência, eles precisam DEMONSTRAR competência. E a forma mais simples de
demonstrar competência é na comunicação verbal, principalmente com cliente e civis.

O POGramador deve se utilizar de todo artifício verbal em seu arsenal para mostrar que
é dotado de capacidades técnicas que o marcam como um profissional de primeira linha.
Dentre essas habilidades, está a capacidade de dominar o inglês2.

Por essa razão, é muito comum o uso do vocábulo workaround.

Sempre que você ver um profissional usando o termo workaround, saiba que esse profissi-
onal é o POGramador de alto nível.

Outros sinônimos, em inglês, que são poucos usados no Brasil e, portanto, podem aumentar
a pontuação do POGramador, são as expressões kludge, jugaad, jury rig e “quick and dirt”.

1Omotivo pelo qual o termo “marreta” é tão importante é bastante óbvio, mesmo para o leitor mais desatento: é
porquê eu gosto e eu quero. Se você não percebeu isso, sugiro que procure um profissional especialista(astrólogo,
vidente, adivinho ou áreas correlatas). A propósito: Porque as pessoas dizem “profissional especialista”? Existe
algum especialista que não seja profissional? Um especialista nato? “Conheça Enzo Rodrigo, especialista em
computação quântica aos 4 anos de idade, entre uma colherada de mingau e outra, resolveu o problema da
conjunção telepática de gatos robóticos.”

2O idioma, não um homem proveniente da Inglaterra.

8 CAPÍTULO 3. O QUE É POG?

Outra expressão com a qual devemos ficar alerta é “Do It Yourself” (DIY). Sempre que
essa expressão surge, quase sempre em um livro de feitiçarias malégnas3 disfarçado de
tutorial, pode ter certeza de que existe uma criatura condenada sumonando uma gambiarra
malégna, por conta própria.

Nasmãos de pessoas despreparadas, como civis e programadores, isso quase sempre acaba
num arremedo de projeto, como aquela sua tia que tentou fazer um jarro chinês e acabou
com uma réplica do Útero de Satanás no meio da sala.

E por falar em POGramação…

3.2 Programação Orientada a Gambiarra

Dentre todas as formas de encarnação que a Gambiarra possui, este livro tratará de sua
forma digital mais profícua4: A POG (Programação Orientada a Gambiarras).

A Programação Orientada a Gambiarras (POG ou WOP – Workaround-oriented
programming) é um paradigma de programação de sistemas de software que
integra-se perfeitamente a qualquer grande Paradigma de Programação atual.
[@Desciclopedia2016]

Este paradigma permite que utilizemos de Gambiarras para resolver problemas compu-
tacionais, não computacionais, espirituais, econômicos e até mesmo sexuais, de forma a
garantir o sucesso do projeto.

A aplicação da POG tende a criar mais problemas do que resolve, criando, dessa forma,
um círculo virtuoso que garante empregos a milhões de POGramadores pelo mundo. Cada
problema criado significa mais trabalho e, portanto, mais empregos!

Para compreender a POG, é necessário compreender quais os requisitos para a formação
da POG, quais os princípios que guiam o POGramador e quais as técnicas que esse POGra-
mador usará. Veremos esses tópicos nos próximos capítulos.

3.3 Referências

[^ref]

3.4 Notas

3Se Shiryu disse que é malégna, então é malégna.
4O que capirotos é “profícua”? Não sei. Mas parece termo de autor chique, então, como bom POGramador,

vou usar sem saber o que é, aplicando o Gambi Pattern RCP (Reuse by Copy and Paste).

Capítulo 4

História da POG

Quando procuramos definir a primeira POG da história, a maior dificuldade está no fato
de que o bom POGramador não deixa rastros de seus méritos, pois POGramador não usa
comentários(a não ser que sejam inúteis).

Esse ambiente de incertezas é terreno fértil para o surgimento de boatos, lendas e mitos,
que acabam por transformar a história da POG em um desafio a qualquer historiador. E,
como diz o ditado, “quem não tem história, inventa”. 1

Qualquer afirmação suficientemente convicta é indistinguível da verdade. [@Ca-
beca2020]

Uma dessas lendas diz que a primeira POG foi criada pelo Papa Gregório XIII2.

4.1 O ser humano é umamáquina de reconhecer padrões

Pra entender como surgiu a provável primeira POG, precisamos voltar no tempo e entender
o porque o ser humanos inventou de dar um nome a cada dia.

Pense em nossos antepassados. Não na sua avó, ou no avô dela. Vamos voltar muito antes
disso. Vamos voltar ao tempo em que éramos apenas macacos pelados que acabaram de
descer das árvores.

Nesse tempo, o ser humano não tinha calendário. Não tinha relógio. Não tinha nada que
pudesse dizer “amanhã é segunda-feira”.

Nossas necessidades eram bemmais simples: comer, dormir, fugir de predadores e procriar.
E nós nos tornamos muito bons nisso. Mas como?

Seleção Natural. Vamos chamá-la carinhosamente de Tia Selena.
1Será que a ficcção é a gambiarra do historiador? Fica o questionamento.
2Emminha opinião, o próprio sistema de numeração romano é uma grande POG. “Julius, precisamos de símbolos

para os números”, disse César. “Que nada, César. Usa letra mesmo, que vai dar menos trabalho. Lá na frente,
alguém troca”.

9

10 CAPÍTULO 4. HISTÓRIA DA POG

Tia Selena não escohe os mais fortes, nem os mais inteligentes. Muito menos ainda os
mais bonitos. Ela escolhe os que se adaptam melhor ao ambiente. Os que são capazes de
conseguir recursos necessários para a própria sobrevivência e para sua prole.

Mas como saber o que é comida e o que é veneno? Como saber o que é predador e o que
é amigo? Como saber o que é o sexo oposto e o que é uma ovelha chamada Beeelinha?

Quem era capaz de encontrar as melhores frutas, ou de enxergar aquele coelho carnudo
escondido no meio do mato, comia. Quem achava água, bebia. Quem era capaz de encon-
trar uma boa caverna pra se esconder, dormia pra ver o dia seguinte. E quem se tocava de
que aquele coelho laranja e preto, da altura de um boi, e com garras do tamanho de uma
cara humana, não era um coelho, mas sim um tigre, sobrevivia.

Acontece que nosso cérebro é uma máquina de reconhecer padrões. Ele é capaz de identifi-
car padrões em qualquer coisa que ele pode ver, ouvir, cheirar, tocar, degustar ou imaginar.

Geração após geração, os mais capacitados em reconhecimento de padrões se mostravam
mais aptos a sobreviver. E quem sobrevive, se reproduz e passa pra frente seus genes.

Dessa forma, Tia Selena foi aperfeiçoando nossa capacidade de reconhecer padrões.

E essa máquina de identificar padrões é tão boa nisso que ela chega até mesmo a identificar
padrões em coisas que não existem fisicamente. É o que acontece quando você vê um
rosto na nuvem, um coelho na lua ou interesse sexual por parte de uma mulher que só foi
simpática com você.

4.2 Não basta reconhecer, tem que espalhar

Mas, além de reconhecer padrões, precisávamos também de um jeito de ensinar esses
padrões aos nossos companheiros humanos. Se eu aprendo que um tigre é um predador
perigoso, eu preciso ensinar isso aos meus companheiros.

Eu não chamo o Josiscleisson e solto ele na frente do tigre, esperando que ele sobreviva
ao ataque do tigre e aprenda por conta própria. Eu não preciso empurrar Josiscleisson do
Barranco da Morte Certa pra ele entender que se cair nesse barranco, vai morrer.

É muito mais simplesChamar o Josiscleisson e dizer “Olha, aquele coelho laranja gigante
tem garras do tamanho de nossa cara! E, ao invés de planta, ele come gente! O nome dele
é Desmembrador! Fica longe dele!”.

O que nós fazemos é nos COMUNICAR. Nós explicamos, aos outros humanos, como as
coisas funcionam. E, ao nos ouvir, eles aprenderm com a nossa experiência, evitam nossos
erros e ganham ao repetir nossos acertos. Dessa forma, a comunicação se tornou um dos
pilares da nossa sobrevivência.

Essa capacidade de nos comunicar nos levou a desenvolver uma rebuscada linguagem. E,
como parte dessa linguagem, nós desenvolvemos também a capacidade de contar.

4.3. NÃO BASTA SABER CONTAR OVELHAS 11

4.3 Não basta saber contar ovelhas

Uma vez que o ser humano começou a viver em grupos maiores, houve a necessidade de
mais alimento. E, durante essa busca por mais alimento, nossa capacidade de subverter
padrões nos levou a uma gambiarra maravilhosa: a cerveja!

No tópico anterior, falávamos de um ser humano moleque, o ser humano livre, cuja vida se
limitava a nomadear por aí, catando o que achava pela frente, se escondendo onde podia e
vivendo do que a terra dá.

Esse ser humano comia grãos, como a cevada. Inicialmente, ele comia a cevada como ela
é. Mas, com o tempo, ele começou a perceber que, se ele deixasse a cevada de molho em
água, ela ficava mais macia.

O gosto deveria ser uma droga, então não levou muito tempo pra algum macaco pelado
com um pouco mais de cérebro perceber que se moesse os grãos, a mistura com a água
ficaia mais fácil de consumir.

Com o tempo, o homem foi adicionando coisas a essa mistura. E, em algum momento, não
se sabe se intencionalmente ou não, veio a grande sacada: assar essa mistura resultava
num produto muito mais gostoso e duradouro: o pão.

O pão é um dos principais alimentos da humanidade há milênios. as primeiras evidências
de pão datam de 30 mil anos atrás!

E, pra ter mais pão, ao invés de sair desembestado pelo mundo, procurando mato, o macaco
pelado percebeu que poderia ter muito mais grãos se plantasse os graõs novamente. Assim
nasceu a agricultura.

Além do pão, o homem também gostava de carne. Muita carne. E sair por aí caçando os
bichos já não era tão eficiente assim. Em alguns casos, nós exterminamos todos os bichos
de uma região. E a falta de carne significa que passaríamos fome.

Pra resolver esse problema, nós descobrimos que não precisávamos comer todos os bichos.
Observamos que os bichos também se preproduziam, de tempos em tempos. E, pra ter
mais carne, bastava a gente criar mais bichos.

Mas, como o ser humano é um ser curioso, ele começou a experimentar outras formas e
preparar o pão. E, em um belo dia, talvez de uma mistura de pão estragada, ou de trigo
apodrecido, o macaco pelado descobriu que, se bebesse essa mistura, ele ganhava super
poderes. O homem descobriu o álcool.

Dessa forma, o que era pra ser um erro virou uma feature e o álcool passou a fazer parte
da vida humana.

Nesse processo de descobrir o pão, a cerveja e o churrasco, o ser humano perdeu o ímpeto
de sair livre pelo mundo. Ao ser domesticado pelo trigo e pelo gado, o homem criou um
curral pra si mesmo e chamou isso de “cidade”.

12 CAPÍTULO 4. HISTÓRIA DA POG

Assim, o ser humano se fixou e passou a viver no mesmo local, onde ele poderia plantar e
colher, criar e matar, sem precisar se deslocar. E, talvez pelotempo extra que ganhou ao se
tornar sedentário, talvez pela necessidade de controlar seus rebanhos, o homem começou
a contar. E não parou mais.

4.4 Precisamos contar o tempo

O homem agora domina a terra e o gado. Ele é senhor do ambiente. E, como todo ser
imundiçado que é, ele nunca fica satisfeito e quer mais. Ele quer mais terra, mais gado,
mais comida, mais bebida, mais mulheres, mais filhos, mais poder.

Acontece que a natureza não é um buffet de recursos grátis, que basta você chegar e pegar.
A natureza parece mais com uma liquidação de loja de departamento, daquelas onde até
o anticristo chora e pede perdão, onde você perde sua Air Friyer pra uma família, de 18
pessoas enquanto é espancado com galinhas gritadeiras de borracha.

Na dureza da vida, o macaco pelado percebeu que nem sempre ele precisa plantar e criar.
Às vezes, ele pode simplesmente tomar o que é do outro. Pra que plantar e colher, se eu
posso deixar outro ter esse trabalho e, depois, tomar dele?

Dessa forma, o homem aprendeu a guerrear. E como o homem guerreou.

Agora, o macaco pelado precisa saber quando chove. Quando deve plantar. Quando deve
colher. Quando deve abater seu rebanho. Quando deve fazer um sacrifício ao seu deus.
Quando deve sair para a guerra. Quando deve voltar da guerra. Quando seu filho deveria
ter nascido. Quando deve tirar satisfação com Juvenal, por ele ter visitado sua esposa na
guerra e seu filho ter nascido com a cara do Juvenal.

O ser humano que não sabe contar o tempo é um ser humano perdido.

Mas não adianta o macaco pelado contar o tempo em ciclos lunares, se ele não sabe quando
é a próxima lua cheia. Não adianta contar o tempo em ciclos solares, se ele não sabe
quando é o próximo solstício. Não adianta contar o tempo em ciclos de chuva, se ele não
sabe quando é a próxima estação seca.

Então, junto com essa nossa necessidade patológica de contar e estruturar as coisas, nós
começamos também a registrar as coisas. E assim nasceu a escrita.

E foi assim Tia Selena ensinou um monte de macacos pelados a reconhecer padrões, a se
comunicar, a plantar, a criar animais, a cozinhar, a se embebedar, a guerrar, a levar chifre,
a contar e a escrever.

4.5 O calendário romano

A ideia parece simples: você pega um imundiçado sem Netflix e põe ele pra observar onde
o caminho que o sol fez no céu, desde o momento em que nasceu até o momento em que

4.5. O CALENDÁRIO ROMANO 13

se pôs. E manda ele registrar isso. Essa parte é muito importante!

Daí, ele acorda todo dia, antes do sol nascer, e passa o dia inteiro medindo o caminho do
sol. Então, ele vai perceber (se não for uma anta) que o Sol nasce e se põe, a cada dia, num
lugar diferente do dia anterior.

Isso ocorre até que, num dia, o sol nasce e se põe no mesmo lugar do primeiro dia. Pronto.
Temos um ciclo. Agora, basta ele contar quantos dias se passaram. E, se ele repetir esse
processo algumas vezes, ele consegue dizer quanto tempo dura UM ANO.

Sim, fizeram isso. E mais de uma vez, na história da humanidade. E, dado o número de
vezes em que os calendários mudaram, ou o processo é mais difícil do que parece, ou as
pessoas encarregadas dse mentir se entediavam facilmente, largavam o projeto no meio e
inventavam números.

Muitos povos tentaram esse processo. E um que se destacou bastante nisso foram os ro-
manos.

O primeiro calendário romano era um calendário Lunar, de 10 meses. Segundo a lenda, foi
implantado na criação de Roma, em 753 a.C.

Esse calendário tinha meses com 30 ou 31 dias, com um total de 304 dias. Os 61 dias
restantes eram o inverno, e ninguém ligava pra contar o tempo no inverno.

Aqui nós já vemos um caso fantástico de POG, em que os 61 dias eram simplesmente CO-
MENTADOS, num claro uso de Commented Code Implementation!

Maledicite scribarum! Nemo curat id quod fit in hieme! Istam lineam commen-
tarium pone. Nemo vocabit si sexaginta unus dies interiit.

– Rômulo, fundador de Roma (753 a.C.)

Em 713 a.C. Numa Pompílio fez a primeira reforma no calendário romano, diminuindo o
número de dias de alguns meses e aumentando o número de meses para 12.

Dessa forma, o ano agora tinha 355 dias. Como resolver os dias faltantes?

Com gambiarra, claro!

A cada 2 anos, um mês extra, de 22 ou 23 dias, era adicionado ao final de “Fevereiro”.
E a decisão de inserir esse mês cabia ao Pontífice Máximo3. Como era um ser humano a
decidir, é óbvio que nem sempre isso acontecia. E, quando acontecia, nem sempre era feito
da mesma forma. O resultado era que, às vezes, o ano não era tão previsível assim.

Parece familiar?

3Maximus Pontifex: Na Roma antiga, o Pontífice máximoera o sacerdote supremo do colégio dos sacerdotes, a
mais alta dignidade na religião romana.

14 CAPÍTULO 4. HISTÓRIA DA POG

4.6 O calendário Juliano

Em 46 a.C. Julio César, resolveu botar ordem nesse quengaral. Com a ajuda do sábio Sosíge-
nes de Alexandria, Júlio Cézar, na época ocupando o cargo de Pontífice Máximo, organizou
um novo calendário.

Esse novo calendário entrou em vigor no dia 1 de janeiro de 45 a.C. Dentre suas principais
características, temos:

• Ano de 365 dias
• 12 meses (sem meses intercalares)
• Acréscimo de 1 dias, de 4 em 4 anos, para compensar a diferença de 4 horas, já que o
ano trópico tem 365 dias e 4 horas

• O primeiro dia do ano passa a ser 1 de janeiro

Esse calendário durou bastante tempo. Dada sua longevidade, pode-se dizerque era um
calendário bastante estável. Contudo, ele tinha alguns “pequenos” problemas:

• Não representava o tempo real que a terra leva pra girar em torno do Sol
• Como os anos bissextos ocorriam a cada 4 anos, a contagem do tempo ia, aos pou-
cos, se desencontrando dos fenômenos naturais, como a mudança das estações, que
ocorriam em datas fixas.

• Com o passar do tempo e o acúmulo dos erros, a data da páscoa ia se afastando gra-
dualmente do Equinócio da Primavera.

Após alguns séculos, a diferença nessas datas já era de dias. E, como a páscoa era um
feriado religioso, isso começou a causar problemas.

Como Júlio César foi um bom POGRamador, ele deixou esse pepino pra outro resolver lá na
frente. Coube ao Papa Gregório XIII, em 1582, resolver esse problema.

4.7 O calendário Gregoriano

Após vários séculos, a diferença entre o calendário Juliano e o ano Solar foi se acumulando.
Em 1582, o equinócio de primavera já ocorria 10 dias antes da Páscoa! E essa diferença
tendia a se acumular ainda mais.,

Por consequência, teríamos na época, duas festividades, a comemoração do Equinócio de
Primavera e a comemoração da Páscoa com 10 dias de diferença (nessa hora, os patrões
já estão se coçando de alergia). E, no futuro, com a diferença almentando, logo teríamos
a Páscoa sendo comemorada em pleno verão do hemisfério norte, com coelhas de bikini e
padres ensandecidos explicando que a busca pelo ovos deveria ser um símbolo de vida e
renacismento e não uma festa em homenagem a Sodoma e Gomorra!

Obviamente que essa situação era insustentável para a religião cristã e uma atitude preci-
sava ser tomada.

4.8. CHAMA O RATINHO 15

Gregório XIII, então, resolveu fazer uma reforma no calendário. Ele convocou um time de
especialistas, incluindo:

• Christopher Clavius, jesuíta alemão, sábio e matemático
• Ignazio Danti, dominicano, matemático, astrônomo e cartógrafo italiano
• Luigi Giglio médico, filósofo, astrónomo e cronologista italiano.

Esse time de estrelas trabalhou nesse problema por 5 anos, após os quais o Papa, em
24 de Fevereiro de 1582, publicou a bula papal Inter Gravissimas, com as mudanças no
calendário.

A principal mudança é que o dia seguinte à quinta feira, 4 de outubro de 1582, não se-
ria sexta feira, 5 de outubro, mas sim sexta feira, 15 de outubro. O papa simplesmente
COMENTOU 10 dias!

Além disso, o algoritmo de definição do ano bissexto passou por uma pequena mudança.
Agora, os anos bissextos seriam definidos da seguinte forma:

• Anos múltiplos de 4, exceto os múltiplos de 100, mas incluindo os múltiplos de 400

Inicio
Declare ano Inteiro;
Declare bissexto Booleano;
Leia(ano);
Se (ano módulo 400 é 0) então

bissexto=Verdade;
Senão

Se (ano módulo 4 é 0 E ano módulo 100 é diferente de 0) então
bissexto=Verdade;

Senão
bissexto=Falso;

Fim

Com essas mudanças, o calendário Gregoriano tornou-se, com o pasar do tempo, o calen-
dário mais usado no mundo. Entretanto, ele não é perfeito e, em 4909, o calendário estará
adiantado em UM dia em relação ao calendário solar. Mas isso é problema pra outro PO-
GRamador resolver lá na frente.

4.8 Chama o Ratinho

Muitos afirmam que o Papa Gregório XIII foi o criador do Ano Bissexto. Mas, como vimos,
isso é um erro!

É óbvio que um POGramador experiente é capitalista com os méritos, socialista com os
erros e autoritário com a culpa. Mas o Gregório nem sequer tentou assumir a autoria
desse projeto!

16 CAPÍTULO 4. HISTÓRIA DA POG

A ideia de dias a mais para compensar o descompasso entre o calendário e o ano solar é
usada em diversos calendários ao longo da história. Hoje, parece simples contar quanto
tempo tem um ano, mas isso já foi um grande desafio!

O ano bissexto, especificamente, foi introduzido no Calendário Juliano. Portanto, se consi-
derarmos o Ano Bissexto com a primeira POG, seria Júlio César o primeiro POGramador.

Devido a essa confusão, que atribui os mérito da criação do Ano Bissexto ao Papa Gregório
XIII, é que ele é considerado o Padroeiro dos POGramadores e, no dia 29 de Fevereiro, é
comemorado o Dia Internacional da POG.

4.9 Referências

[^ref]

4.10 Notas

Capítulo 5

Requisitos da POG

Além de empregar POG como acrônimo para Programação Orientada a Gambiarra, temos
também o termo “pog”, usado corriqueiramente como sinônimo de “uma gambiarra”, ou
seja, uma simples unidade de gambiarra implementada por um POGramador. Assim, é co-
mum que um POGramador diga “eu fiz uma pog” quando descreve o artefardo1 resultante
de seu trabalho.

No mundo do desenvolvimento de software, existe a noção de que uma pog é resultado do
esforço laboral de um POGramador. Tal noção, apesar de parecer bastante lógica, é um
engano tão ardiloso que é capaz de enganar até mesmo as mentes mais sagazes.

Um POGramador não é o criador da pog. Ele é apenas um conduíte para uma pog que
deseja vir a este mundo. O trabalho do POGramador é apenas sumonar essa pog, tal qual
faria para sumonar um demônio. Portanto, uma pog não é criada, ela é sumonada. E, para
que este ritual seja bem sucedido, é preciso que certos Requisitos sejam cumpridos.

De que Requisitos estamos falando? Não, não estamos falando de sacrificar um virgem2.
Estamos falando de condições que afetam as probabilidades do nascimento de uma pog.

Os Requisitos da POG podem ser classificados em diversas categorias, de acordo com o
ponto de vista sob o qual olhamos esses Requisitos.

5.1 As dimensões dos Requisitos da POG

Durante milhares de anos, a humanidade encarou o mundo em 3 dimensões: largura, altura
e profundidade. A ciência do século XX e a ficção científica acabaram por nos desvelar a
possibilidade encararmos a realidade pelo prisma de mais dimensões. Agora, tempo é

1Um artefardo é um artefato que cria, para a equipe, um fardo extra. Dessa forma, um artefardo é um ativo
valioso para o POGramador, pois exige desse mais trabalho, o que ajuda a manter seu emprego.

2Até mesmo porque os valores mudaram e a falta de experiência sexual já não é um atributo tão valorizado.
Que tipo de divindade tapada e ajamantada deseja o sacrifício de um estagiário sexual? Porque não exigir o
sacrifício de um ser humano dotado de experiência? Porque não solicitar o sacrifício de um sênior da putaria, de
um arquiteto da lascívia ou uma diretora da luxúria?

17

18 CAPÍTULO 5. REQUISITOS DA POG

uma dimensão. Alguns modelos que explicam a realidade apontam a existência de até 11
dimensões!

Podemos, portanto, utilizar o conceito de dimensões como uma forma de classificar e me-
lhor compreender cada um desses requisitos. E porque o conceito de dimensões? Porque
fica muito mais estiloso, óbvio! Se a ciência e a realidade não concordam com minha noção
de estilo, elas duas que lutem!

Vejamos, portanto, quais são os Requisitos da POG, de acordo com cada uma das dimensões.

5.2 Notas

Capítulo 6

Dimensão Humana

Criar software é transformar o âmago do ser humano em impulsos digitais. E, como tal,
o resultado não poderia ser outro: uma sucessão de erros e desastres que trabalham pra
realizar uma tarefa.

Um bom POGrama é um amontoado de coisas escritas que tem a capacidade de fingir
resolver um problema enquanto cria vários outros. O fator humano é, portanto, o principal
influenciador da POG, o ingrediente com sabor mais forte nessa sopa de desgraça que leva
à manifestação digital de uma pog.

Os Requisitos da POG classificados na Dimensão Humana são aqueles produzidos direta-
mente pela participação humana nesse processo. Não é apenas nossa presença danosa que
permite que a POG floresça. É necessário que essa presença ocorra encarnada em algum
dos seguintes estereótipos.

6.1 Equipe Apática

Quer ver a pog se espalhar como erva daninha num jardim bem nutrido? Entregue seu
projeto a uma equipe apática.

Não importa qual desgracença desperte de sua caixa de pandora dos infernos, eles não
se abalarão. Dia após dia, essa equipe mostrará que não se importa com absolutamente
nada além de seus salários. E, por isso mesmo, estarão dispostos a usar qualquer recurso
disponível que garanta o pagamento mensal.

Uma equipe apática não se importa com o passado e não liga para o futuro. A única coisa
que eles querem é que alguém lhes diga o que fazer (desde que não dê muito trabalho) e
que seu pagamento os aguarde, ao fim do mês. Nada mais importa. Assim, se uma pog for
útil pra resolver o problema atual, eles a usarão sem um pingo de remorso.

Dessa forma, mesmo que um pequeno jardim de pogs se torne a nova Floresta Amazônica
da Calamidade, uma Equipe Apática não vai se abalar para resolver nada disso.

19

20 CAPÍTULO 6. DIMENSÃO HUMANA

6.2 Profissionais Superestimados

Junto com uma Equipe Apática, quase sempre aparece um Profissional Supervalorizado,
aquele profissional que todo mundo acredita que ele sabe o que faz e que vai resolver
todos os problemas. Evidentemente que todos os problemas caem no colo dele e ele acaba
sobrecarregado.

Nesse cenário, o Profissional Supervalorizado acaba por cometer desde os erros mais sim-
ples até os erros mais catastróficos. E são erros tão épicos que as pessoas o olham com
admiração e pensam “UAU, olha só o tipo de problema com o qual tem que lidar!”, sem
perceber que ele mesmo (e sua Equipe Apática) é que criaram esses problemas.

Um Profissional Supervalorizado acaba, portanto, sempre recorrendo à pogs para resolver
aquilo que deveria resolver com resoluções resolvedoras de alta resolutividade, mas que
ele não conhece. E que ninguém percebeu, ainda, que ele não conhece.

Esse profissional costuma ser um grande invocador de pogs da equipe, o que acaba por
aumentar sua fama e o quanto ele é superestimado.

6.3 Arquiteto MacGyver

Numa equipe POG, oumesmo em uma empresa usuária de POG, émuito comum a existência
de uma figura mítica: o Arquiteto MacGyver.

Esse profissional ostenta capacidades excepcionais de produção de sistemas em tempo
recorde, com mínimos recursos. Dê a ele 2 dias e uma garrafa de café, e ele volta com um
ERP completo.

O que muita gente não sabe é que o Arquiteto MacGyver é um mestre no uso de geradores
de POGramas, frameworks e todas as artimanhas necessárias pra criar um calhamaço de
POG que pareça resolver o problema proposto. E o projeto gerado por este profissional,
apesar de impressionar à primeira vista, costuma apodrecer mais rápido que que fruta em
mochila de POGramador.

O Arquiteto MacGyver costuma ter um relacionamento dúbio com a equipe, ora atuando
com fonte de inspiração para ideias pseudodisruptivas, ora atuando como fonte de ins-
piração para impropérios capazes de fazer o próprio Moonwalker de Curupira1 corar de
vergonha.

1Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemológico, do Farofa Doce,
do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17… Para mais nomes, visite Invocador de Nomes
do Capeta

https://invocapiroto.com.br
https://invocapiroto.com.br

6.4. GERENTE SEM NOÇÃO 21

6.4 Gerente Sem Noção

Um time POG não estaria completo sem um Gerente Sem Noção. Figura frequente no
desenvolvimento de software, o Gerente Sem Noção é aquele gerente que tem tanto conhe-
cimento da produção de software quanto um incel possui sobre sexo.

Esse gerente costuma atormentar a vida da equipe questionando prazos dados pelos pro-
gramadores, dando prazos completamente irreais aos clientes, passando tarefas inúteis,
fazendo as perguntas mais imbecis nos momentos mais inapropriados e tomando decisões
técnicas sem o mínimo de fundamento.

Um Gerente Sem Noção, mesmo não digitando uma linha de código sequer, tem um poder
gambiarrizante tão alto que é capaz de transformar uma equipe bem qualificada nas técni-
cas tradicionais (ou modernas) em uma turba desgovernada capaz de revogar, por acidente,
a própria Lei da Gravidade.

Em nossa supracitada sopa de desgraça, tão necessária para nutrir nossas POGs, o Gerente
Sem Noção é a pimenta.

6.5 Cliente Corrosivo

Se o Gerente sem Noção é a pimenta, o Cliente Corrosivo é o “tompero” [@Jacquin2019].

O Cliente Corrosivo é a entidade que paga por duas coisas: pelo projeto e pelo direito de
estragar o projeto. Ele não apenas se coloca como financiador dessa empreitada, mas como
um dos principais obstáculos que devem ser superados.

Dentre os comportamentos nocivos deste cliente, temos:

• Interferir, a todo momento, nas tarefas da equipe, passando por cima da autoridade
de todos os idiotas que ele está pagando para comandar essa equipe.

• Fazer solicitações impossíveis e pedidos impraticáveis, a essa mesma equipe, igno-
rando o aviso dos imbecis que ele contratou para avisá-lo sobre solicitações impossí-
veis e pedidos impraticáveis.

• Esquecer acordos que ele mesmo aceitou e quebrar contratos que ele mesmo assinou.
• Ignorar parâmetros de completude de tarefas que ele mesmo estabeleceu.
• Voltar atrás na palavra que ele mesmo deu.
• Pedir mudanças fora do escopo que ele mesmo aprovou.
• Ignorar o fato de que a equipe que ele contratou é formada de criaturas da espécie
humana e não de robôs. Essas criaturas têm necessidades importantes que devem
ser plenamente satisfeitas, tais como sono, fome, sede, cansaço e desejo homicida de
atirar pedras de granito, que pesam 5kg cada, na cabeça do cliente.

O Cliente Corrosivo tem esse nome porque sua atuação no projeto é semelhante a de um
ácido, corroendo até mesmo o melhor dos materiais e transformando uma boa equipe em

22 CAPÍTULO 6. DIMENSÃO HUMANA

aterro sanitário de boas ideias, capaz de produzir o mais puro suco de chorume em forma
de código POG.

6.6 Usuário Abrasivo

Ainda que o cliente não seja corrosivo, seu séquito de lacaios, os usuários abrasivos, podem
contribuir para criar um ambiente propício ao aparecimento de POG.

O Usuário Abrasivo é aquele usuário que não tem poder de decisão sobre o andamento do
projeto, mas tem o poder de atravancar e atrapalhar o desenvolvimento deste. Algumas
vezes ele age como se sua vida estivesse ameaçada por este projeto (e às vezes ele está
certo). Em outras, ele simplesmente se recusa a fazer o que tem de fazer.

Não imposta qual seja o motivo, o Usuário Corrosivo tem o dom de irritar a equipe. Até
mesmo uma Equipe Apática pode perder a paciência diante de um Usuário Abrasivo. Sua
capacidade de antagonizar membros da equipe é comparável à capacidade que um ocu-
pante do cargo mais alto de uma república tem de fazer merda.

Ele simplesmente sabota o projeto, não testa o que deve testar, não fornece informações
para os analistas, não colabora com ideias e insigths (a não ser que sejam extremamente
odiosas e custosas) e sempre que pode, reclama de tudo o que é feito. Se a equipe lhe der
uma barra de ouro, o Usuário Corrosivo reclama que tem mais peso pra levar pra casa.

Esse usuário causa pequenos danos, no decorrer do projeto, que vão se acumulando. Aná-
logo ao Efeito Borboleta, o Usuário Abrasivo causa o Efeito Asa de Urubu, que causa o
mesmo furacão, só que com o cheiro podre e carnicento do miasma que é a sua alma. Pra
satisfazer o desejo de sangue deste usuário, os POGramadores recorrem a toda ordem de
sortilégios e mandingas disponíveis no seu cinto de utilidades de POG.

Obviamente que isso vira um círculo vicioso, onde mais pogs são necessárias pra aplacar
a sede de sangue, que só aumenta devido às pogs já usadas, numa retroalimentação de
energias negativas que faz qualquer adepto do namastê emplacar um sonoro sifudê.

6.7 Intrometido Inepto

Pra completar a corte enviada pelo Estraga Suruba2, temos o Intrometido Inepto. Essa
figura aparece em diversas fases do projeto com uma única missão: se intrometer onde não
é chamado para fornecer uma opinião não solicitada sobre um assunto que não domina.

O Intrometido Inepto costuma colaborar na criação de pogs ao colocar ideias perniciosas
nas mentes de tomadores de decisões despreparados para lidar com essa influência danosa.

É esse filho do Chinelo Emborcado3 que planta, na mente fértil do Gerente Sem Noção, a
2Estraga Suruba é outro nome do capeta. Ver nota 1.
3Chinelo Emborcado é outro nome do capeta. Ver nota 1.

6.8. DOBRADOR DE PROBLEMAS 23

ideia de que seria muito útil se o sistema financeiro tivesse uma funcionalidade de geração
aleatória de nomes do capeta no campo de nomes dos fornecedores.

É esse Torresmo de Prepúcio4 que, num ato de covardia e prazer pelo sofrimento alheio,
convence o cliente de que o sistema precisa ter a capacidade de enviar emails através de
pombos-correio, caso a internet caia.

É esse Tempero de Miojo5 que diz para o Gerente Sem Noção que a equipe vai render muito
mais se for marcada uma palestra motivacional com coach quântico numa sexta feira, às
18h30. E sem lanche, pois a fome é uma motivadora muito fote.

Se você identificar um Intrometido Inepto junto aos tomadores de decisão associados ao
seu projeto, a atitude mais correta e humana é capturar e entregar para o Ibama. Se isso
não for possível, reze. Se for ateu, essa é uma boa hora pra adotar uma religião.

6.8 Dobrador de problemas

Ao tratarmos da dimensão humana, não poderíamos deixar de mencionar um papel que
pode ser assumido por qualquer um dos membros dessa pequena seita de invocação de
calamidades digitais: o Dobrador de Problemas.

Não se sabe qual fenômeno causa essa transfiguração na criatura humana. O que se sabe
é que, em qualquer momento de um projeto, o espírito do Dobrador de Problemas pode
encarnar em seu avatar (que poder ser qualquer um, mas quase sempre é o gerente) e esse
passa controlar os problemas da equipe com toda destreza e graciosidade do Nariz Fora
da Máscara6 tentando causar um pequeno apocalipse.

Tal qual um Jesus da Desgracença, o Dobrador de Problemas pega um pequeno empecilho
pra resolver e, a partir desse minúsculo pedacinho de caos, ele gera um tufão de esmerda-
lhamento que multiplica e joga problemas pra todos os lados, fazendo o efeito Asa de Urubu
parecer um folheto de igreja que mostra uma criança loira montando um leão vegano.

Você dá um problema pra essa criatura desatinada resolver e, de repente, ela invocou um
Tiamat de 37 cabeças. Era pra fazer um café. Uma mísera garrafa de café. Como isso ge-
rou um prejuízo de 3 bilhões, para o cliente, 3 mil empregos perdidos (nenhum de POGra-
mador) e uma crise diplomática com o Canadá? COMO INFERNO ALGUÉM CONSEGUE
ARRUMAR UMA BRIGA COM O CANADÁ?

Ninguém sabe. Mas agora o gerente exige a contratação de mais 18 POGramadores e
nosso espírito de luz (de cabaré) pode retornar ao seu limbo, feliz pelos empregos criados
e projetos extendidos, e aguardar a próxima vez que será sumonado.

Quem será o próximo a ser possuído?7

4Torresmo de Prepúcio é outro nome do capeta. Ver nota 1.
5Tempero de Miojo é outro nome do capeta. Ver nota 1.
6Nariz Fora da Máscara é outro nome do capeta. Ver nota 1.
7Certeza que é o gerente. É sempre o gerente.

24 CAPÍTULO 6. DIMENSÃO HUMANA

6.9 Notas

Capítulo 7

Dimensão Tecnológica

Uma outra dimensão que afeta constantemente nossos projetos, adubando o jardim da
desgracença para que a POG possa germinar com todo vigor, é a Dimensão Tecnológica.

Ainda que todos os seres humanos envolvidos tenham seus espíritos imaculados e imbuídos
das melhores intenções, existem os Requisitos da POG ligados à fatores tecnológicos. Esses
Requisitos, quando satisfeitos, levam a tecnologia, antes usada para solucionar problemas,
a se tornar uma fonte saudável de novos problemas mantenedores de emprego.

Temos, portanto, as seguintes aparições que, quando presentes, trazem à equipe o terror
necessário para que a pog possa ser devidamente conjurada:

7.1 Tecnologia Inadequada

Ah, a beleza da tecnologia. Milhares de anos de esforço científico, milhões de horas de
trabalho aplicadas com o intuito de facilitar o trabalho humano. O ápice do conhecimento
encarnado em forma de técnica. E o que a equipe escolhe para cortar um pão? Ummartelo.

Isso mesmo. Um martelo. Um maldito martelo!

Para quem só sabe usar martelo, todo problema é prego.

– Jesus, ensinando POGramação ao Thor

A escolha de tecnologias inadequadas é um prato cheio pra quem quer se fartar no jantar
da POG. Com a tecnologia errada em mãos, a equipe é obrigada a invocar todo tipo de
pog pra resolver os problemas para os quais foram contratados. E, logo em seguida, eles
precisam usar mais pogs para resolver os novos problemas que as pogs usadas criarão,
num maravilhoso círculo vicioso que logo se torna o furacão do esmerdalhamento!

A decisão sobre o uso de uma tecnologia inadequada pode ter muitos culpados. Pode ser
uma sugestão do Intrometido Inepto, pode ser uma decisão do Gerente Sem Noção, pode

25

26 CAPÍTULO 7. DIMENSÃO TECNOLÓGICA

ser uma escolha da Equipe Apática… Qualquer um pode ser culpado por esta decisão, o
que torna esse requisito um dos mais democráticos e fáceis de ser atingido!

Quando os culpados estão na equipe, isso pode ser um sintoma de outro requisito que,
quase sempre, aparece junto com a escolha de uma tecnologia inadequada…

7.2 Desconhecimento Técnico

Porque contratar profissionais qualificados se contratar uns estagiários e colocar um Ar-
quiteto MacGyver pra ser babá deles? Talvez um ou dois Profissionais Superestimados?
Porque não acrescentar logo um babuíno raivoso, com um dildo de borracha de 78 cm que
ele usa como porrete?

Aqui temos um Requisito da POG que faz com que a POG praticamente surja sozinha. A
falta de conhecimento técnico por parte de membros da equipe cria um ambiente onde a
pog cresce livre e faceira.

Esse tipo de equipe é bastante comum e é a semente pra quase todos os outros males que
aparecem associados à POG. Uma equipe sem o devido conhecimento acaba, praticamente
sozinha, criando uma reação em cadeia que gera vários dos outros Requisitos da POG. Essa
equipe se torna o tolete inicial de uma gigantesca avalanche fecal que pode varrer qualquer
projeto para os círculos mais profundos do inferno.

7.3 Obsolescência Adquirida

Mesmo um trabalho bem feito pode acabar apodrecendo com o tempo. E é nesse momento
que o vendedor, tal qual o Explica Piada de Encruzilhada1, surge para convencer seu ge-
rente de que o software dele vai ajudar a aumentar a produtividade da equipe. E é assim a
equipe acaba tendo que usar aquele servidor de aplicações que foi renegado pelo próprio
criador por ser complexo demais.

Mas esse não é a única forma de você acabar tendo que trabalhar com uma carroça digital.
O problema da Obsolescência Adquirida é que ela vai chegar e a questão não é eliminá-la,
mas sim com quanto dela você consegue conviver.

Aquele computador encarroçado que você é obrigado a usar no trabalho já foi uma Ferrari!
O software de registro de ocorrências feito em applets Java, 1999, e que ainda é usado
por essa grande companhia telefônica, já foi uma obra prima da engenharia humana. O
problema é que o tempo passa e e o ser humano quer lidar e inventar NOVOS problemas.
Ter que lidar com os antigos é chato.

1Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemológico, do Farofa Doce,
do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17… Para mais nomes, visite Invocador de Nomes
do Capeta

https://invocapiroto.com.br
https://invocapiroto.com.br

7.4. RIGIDEZ ARQUITETURAL 27

Mas é aqui, amigo POGramador, que uma oportunidade surge: a obsolescência adquirida
cria uma oportunidade rara para o desenvolvimento, e até mesmo masterização, de suas
habilidades de POGramação.

Um ambiente com infra-estrutura tão estável e madura oferece uma chance única de testar,
por longos períodos de tempo, suas pogs. E quando dizemos “longos”, estamos falando
longos mesmos! Existem pogs rodando há mais de 50 anos no setor bancário!

Você pode criar seu próprio Ano Bissexto e ser imortalizado!

7.4 Rigidez Arquitetural

Flexibilidade. Nunca um conceito foi tão deturpado pela academia e pelos ditos defensores
de boas práticas. Em nome da “flexibilidade”, eles maculam nosso código com práticas que
levam nossos softwares a se adaptarem a várias situações SEM que nossa intervenção seja
necessária.

Olhe para o colega ao seu lado. Se ele faz uso desse tipo de técnica, ele é um traidor. Não
há outra palavra para designar esse filho do Agonia de Domingo2, esse rebento do Equação
de Segundo Grau3, esse capacho do Corote Azul4.

Flexibilidade real é a capacidade que seu software tem de ser usado para outras situações,
mas com SUA intervenção. Num ambiente de flexibilidade saudável, você pode pegar seu
sistema de controle de vídeo locadora5 e, com SUAS adaptações (obviamente em formato de
pogs), transformar essa pequena pérola da engenharia humana em um sistema de controle
hospitalar! Assim, você transforma em oportunidade o produto da Obsolescência Adquirida
e ainda se utiliza do princípio da Enjambração para economizar tempo e lucrar!

Portanto, ao criar seus sistemas, torne a arquitetura dele o mais rígida que conseguir, para
impedir outros de roubarem seu trabalho, mas flexível o suficiente para que você possa
adaptar esse sistema a uma situação completamente adversa da original, com mais gambi-
arras! Lembre-se: quanto mais gambiarra, mais emprego!

2Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemológico, do Farofa Doce,
do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17… Para mais nomes, visite Invocador de Nomes
do Capeta

3Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemológico, do Farofa Doce,
do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17… Para mais nomes, visite Invocador de Nomes
do Capeta

4Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemológico, do Farofa Doce,
do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17… Para mais nomes, visite Invocador de Nomes
do Capeta

5Se você sabe o que esse termo significa, você é grupo de risco do Coronavírus. Fique me casa e laves as mãos.

https://invocapiroto.com.br
https://invocapiroto.com.br
https://invocapiroto.com.br
https://invocapiroto.com.br
https://invocapiroto.com.br
https://invocapiroto.com.br

28 CAPÍTULO 7. DIMENSÃO TECNOLÓGICA

7.5 Projeto Malamanhado

Início de projeto. A equipe se reúne (já começou errado!) para discutir a arquitetura e
sempre tem um Arquiteto MacGyver que, instigado pelo Batizado no Chorume6, resolve
trazer à pauta as “melhores práticas do mercado”.

Esse era o momento em que o regimento da empresa deveria deixar claro que permite o
uso de violência (CADÊ O MALDITO BABUÍNO???).

Esse arquiteto traíra está criando uma armadilha com o único intuito de alavancar a própria
carreira e mudar de empresa. E, enquanto ele sai pra se esbaldar com sua nova proposta
salarial indecente, larga essa Equipe Apática com um projeto super bem estruturado… que
ninguém sabe mexer.

O resultado é que os membros da equipe vão mutilando o projeto e enxertando pogs como
se não houvesse amanhã. Isso vai criando um Frankenstein de código que, tal qual o citado
monstro, se volta contra a sua equipe, aumentando exponencialmente a quantidade de
gambiarras necessárias para manter o sistema funcionando.

Um Projeto Malamanhado tem o seu valor. Ele é democrático. Todo mundo consegue pogar
nele, desde o Programador Supervalorizado frequentador de reuniões sexuais de segurança
duvidosa até aquele estagiário que tem tanta concentração alcoólica no sangue que poderia
entrar em combustão espontânea!

O problema é que sem um guia adequado, o projeto que parecia um pedaço de mal caminho
se transforma logo em uma auto estrada da perdição!

7.6 Notas

6Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemológico, do Farofa Doce,
do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17… Para mais nomes, visite Invocador de Nomes
do Capeta

https://invocapiroto.com.br
https://invocapiroto.com.br

Capítulo 8

Dimensão Estrutural

Temos uma equipe de anjos imaculados criados pelo próprio Linus Torvalds, adeptos da
melhores práticas e munidos das mais belas tecnologias.

É possível que, frente à tamanha santidade, ainda seja possível que a POG encontre seu
caminho para a luz?

Sim, é. Nenhuma santidade resiste à problemas da Dimensão Estrutural.

8.0.1 Cafeína Ausente

O santo néctar dos deuses, o combustível da invocação codística, o puro sumo da estimula-
ção neuronal geradora de código tem um nome: cafeína.

Este estimulante saudável (principalmente se tomado em doses que fariam um elefante voar
propelido pela tromba) é o combustível que nosso cérebro usa para transformar ideias em
código. Esqueça tudo o que já te disseram sobre glicose, ATP, PQP ou VSF. É a cafeína que
vai virar código.

A cafeína assume várias formas. As mais comuns são o café (a mais tradicional), o chá
(quase ninguém relevante para o código toma), ou em forma de refrigerante escuro que
não mencionarei o nome porque não esta me pagando (#paganois).

E o que acontece quando um Gerente Sem Noção resolve “economizar” no café?

A POG vem. E vem com força.

Cérebros descafeinados tendem a procurar (no Google) a solução mais fácil (Starckover-
flow) para um problema. E acabam adotando a primeira pog que encontram.

Além disso, por estarem com seus pensamentos se movendo no mesmo ritmo dos civis, os
POGramadores se tornam mais suscetíveis aos Intrometidos Ineptos, que, curiosamente,
aparecem com mais frequência nesses momentos.

29

30 CAPÍTULO 8. DIMENSÃO ESTRUTURAL

Curiosamente, a cafeína em excesso (conceito cientificamente controverso, já que é cienti-
ficamente comprovado que não existe o conceito de “cafeína em excesso”) também acaba
por acelerar seus POGramadores e aumentar a taxa de geração de pogs deles.

8.0.2 Trono da Tortura

Trabalhar já é uma atividade deprimente. Quem, em sã consciência, diz que ama trabalhar
quando poderia estar fazendo atividades mais lúdicas, como cuidar de uma fazenda virtual,
quebrar pedras coloridas ou combater demônios, em pleno inferno, com uma metralhadora
do tamanho de seu complexo de inferioridade?

Mas nós precisamos trabalhar. Vivemos no capitalismo e, a não ser que você seja um
privilegiado que não precisa pagar suas próprias contas, é necessário fazer programa por
dinheiro.

O trabalho do POGramador é resolver problemas. E, pra cada problema resolvido, ele
precisa criar pelo menos mais dois. É parte do jogo. Mas pessoas confortáveis tendem a
resolver mais problemas do que criam. Isso é ruim para os negócios.

Para resolver este problema (e criar mais), o Gerente Sem Noção inteligente sabe que
sacrifícios devem ser feitos. No caso, o sacrifício da coluna do POGramador. É por isso que
sua cadeira, essa onde você está sentado agora, é um lixo.

Esse instrumento de tortura, abandonado pela santa inquisição por ser demasiado desu-
mano, é a primeira escolha de uma empresa que deseja manter alta taxa de geração poga-
cional.

Observe só os gamers. Observe eles, em suas cadeiras estilosas e confortáveis, algumas
equipadas até com vão centrar para instalação de um shit bucket (não procure no Google).
O que eles fazem o dia inteiro? RESOLVEM PROBLEMAS!

Eles salvam planetas de tiranos, ajudam encanadores a resgatar princesas das mãos de
calangos anabolizados, vencem, pela milésima vez, a guerra contras os nazistas (coisa que
nós, humanos normais, ainda falhamos em fazer) e ainda encontram tempo para roubar,
matar, espancar pessoas e atropelar velhinhas inocentes em cidades fictícias. Tudo isso
sentado!

É óbvio, portanto, uma equipe detentora de um aparato portador de busanfas de alta qua-
lidade é incapaz de manter o fluxo problemático tão necessário à manutenção da lucrativi-
dade corporativa.

Boas cadeiras só servem pra tornar POGramadores em programadores. E não é isso que
nós queremos, certo?

Se não bastasse tudo isso, cada POGramador com problema na coluna é um consumidor
voraz de medicamentos e, em casos mais graves, consultas médicas e a profissionais de
procedência duvidosa. Imagine toda essa gente desempregada e desamparada, apenas
porque alguém resolveu que quer se sentar confortavelmente.

31

Cadeira ruim é dinheiro pra todos!

8.0.3 Automação Capenga

Se tem uma coisa que ajuda a acelerar o trabalho, é a automação. Cada tarefa automatizada
é trabalho a menos pra equipe. E o que isso significa? Que você vai sair mais cedo? Que
vai ter folga? Que vai ter mais dinheiro no bolso?

Não. Significa que você terá menos trabalho. E menos trabalho é igual a menos emprego.

Uma automação bem feita, além de diminuir o seu trabalho, diminui sensivelmente a taxa
de erros, gerados pela equipe devido à execução repetida de tarefas complexas. E isso é
muito ruim, pois elimina uma importante fonte geradora de pogs espontâneos.

Como resolver isso? Não automatizando, óbvio. E, se for necessário automatizar, faça com
que a execução dessa automação seja tão ou mais complexa que o próprio processo que foi
automatizado.

Dessa forma, ao executar um processo capengamente automatizado, podemos continuar
inserindo, aleatoriamente, erros no ambiente, de forma a estimular a criação de pogs para
a resolução desses erros.

8.0.4 Poluição Sonora

De todos os requisitos necessários para a implementação de um ambiente saudável e pro-
pício a geração de pogs, a Poluição Sonora costuma ser um dos mais subestimados.

É prática recorrente dos POGramadores o uso de fones de ouvidos. Muitos alegam que
isso ajuda na concentração, mas a verdade é que eles estão apenas utilizando uma forma
de manter outros seres humanos à distância. O fone de ouvido é o isolamento social antes
de ser modinha.

Acontece que POGramadores, isolados de outros POGramadores, perdem muito do seu
potencial de gerar POGs! Além disso, o uso da música como isolante acústico ajuda o
POGramador a entrar num estado de fluxo mental que pode fazer com que ele RESOLVA
mais problemas do que consegue CRIAR, que é a função primordial dele.

Dessa forma, faz-se necessário criar um ambiente em que o som da barafunda à sua volta
consiga penetrar a barreira de proteção dada pelos fones1.

Para atingir tão nobre objetivo, podemos usar de diversos artifícios, alguns permanentes e
outros temporários. Lembre-se que a aleatoriedade do barulho ajuda a atrair a atenção do
POGramador.

Podemos fazer desde reuniões ruidosas, perto do ambiente de trabalho, até colocar um som
ambiente com trilha sonora qualidade duvidosa em um volume agressivamente alto.

1Atenção: JAMAIS tire os fones de um POGramador. Isso desabilita qualquer parte do seu cérebro que controle
a violência e torna o POGramador passível de comportamento bestial, semelhante a um felino acuado por alguém
vestindo uma fantasia de gato de loja de fantasias baratas.

32 CAPÍTULO 8. DIMENSÃO ESTRUTURAL

Podemos implantar um funcionário, com o tom vocal de um feirante de novela da Globo,
próximo à equipe. E podemos atingir um combo se esse funcionário for dotado de um
telefone que toca mais que celular vazado em rede social.

Telefones, aliás, pode ser uma arma extremamente eficiente para esse fim. Dê vários tele-
fones para a equipe. Se possível, um pra cada POGramador. Agora, dê esses números para
os clientes. Veja a POG fluir de seu projeto como a água flui nas cataratas do Iguaçu.

8.0.5 Trânsito Sanitário

Apesar do que muitos empresários acreditam, os membros de uma equipe produtora de
POGramas pertencem à espécie humana. O número de erros que eles cometem é a maior
prova disso. Nem precisamos olhar o DNA.

Como seres humanos, seus corpos possuem necessidades que devem ser adequadamente
satisfeitas para que continuem funcionando. Tá, não precisa ser tão adequado assim. Se
garantirmos o mínimo de alimentação, hidratação, excreção, sono, ingestão de cafeína e
alimentação de ego com infantilidade no ambiente de trabalho, o POGramador será plena-
mente capaz de exercer as suas funções geradoras de lucro.

Dessas necessidades, devemos destacar a influência de uma sobre a produção individual
de pogs: a necessidade de defecar.

Desde a revolução industrial que o capitalismo tenta, a todo custo, controlar a necessidade
que indivíduo tem de colocar pra fora o resto de sua alimentação. Tempo é dinheiro e
funcionário no banheiro está ganhando pra defecar. Isso não é desejável.

Contudo, um funcionário impedido de usar o banheiro pode se tornar um problema pra
empresa. Uma pessoa forçadamente entupida é incapaz de produzir qualquer coisa que
seja, até mesmo a mais sinistra POG. Além disso, uma empresa que venha a aderir a tais
práticas pode sermal vista pelo público, seja por uma denúncia às autoridades competentes,
seja por um episódio se surto simiano em um programador de meia idade, que, tomado pelo
ódio, passa a cagar na mão e a atirar merda nos clientes, funcionários e patrões. Isso não
seria legal. Viralizaria em site de vídeo? Sim. Mas não seria legal.

Como conciliar o atendimento a uma necessidade tão básica do ser humano com as neces-
sidades de geração de POG da equipe?

Use estrategicamente a localização do sanitário!

Ou o banheiro fica próximo a onde as pessoas trabalham, que é para elas se inspirarem no
cheiro de merda, ou fica londe de onde trabalham, para que a preguiça as faça demorar
mais pra ir ao banheiro, o que gera uma enorme pressão fecal que as estimule a fazer mais
merdas no código.

Seja inspiração interna ou externa, a posição do banheiro pode potencializar o nível de
produção de sua equipe!

33

34 CAPÍTULO 8. DIMENSÃO ESTRUTURAL

Capítulo 9

Dimensão Processual

O capitalismo (conhecido carinhosamente como Capetalismo) é uma beleza. Lá está a
equipe engajada e preparada, com as melhores tecnologias do mercado, num escritório
tão bem feito que dá vontade de adicionar o termo “home office” a alguma lista da antiga
Inquisição… Mas o capetalismo precisa da POG e alguém tem que fazer alguma coisa.

É nesse momento que entra em cena a equipe de processos da empresa!

A Dimensão Processual engloba os requisitos que são satisfeitos e documentados através
dos processos escolhidos pela empresa por puro sadismo organizacional.

Enquanto a Dimensão Humana dá o empurrão inicial e a Dimensão Tecnológica fornece as
ferramentas da desgracença, é o processo que oficializa o caos com logo da empresa, ata
de reunião e plano de ação em PowerPoint.

Em resumo: processo ruim não só permite POG, ele industrializa POG.

9.0.1 Prazos suicidas

Em qualquer empresa humanamente decente, prazos são definidos de acordo com um con-
junto de fatores que tenta minimizar ao máximo as incertezas:

• Estatísticas dos projetos anteriores
• Custos
• Estimativa da equipe sobre tempo e complexidade das tarefas
• Velocidade da equipe
• Técnicas de engenharia para cálculo de prazo

Mas nós sabemos que a diminuição das incertezas leva à diminuição do surgimento de
POGs, certo?

Nesse contexto, devemos manter um certo nível de incerteza no ar. Contudo, ao se definir
um prazo para as tarefas, devemos optar pelo prazo mais longo?

35

36 CAPÍTULO 9. DIMENSÃO PROCESSUAL

Prazo suicida {caption: Diagrama meticulosamente criado para ilustrar o tamanho ideal
do prazo}

Figura 9.1: Prazo suicida {caption: Diagrama meticulosamente criado para ilustrar o ta-
manho ideal do prazo}

JAMAIS!

Como podemos ver no diagrama acima, qualquer prazo que a equipe aceite será devida-
mente deserdiçado com progcrastinação (ou pior, estudando!), pânico e choro! Somente
na pequena porção final do prazo é que a equipe vai se dedicar à entrega, trabalhando
ferozmente e gerando POGs como se não houvesse amanhã.

Como saber exatamente quão curto deve ser o prazo? É simples:

1. Pergunte o prazo pra equipe
2. Divida esse prazo por dois.
3. Repita o passo 2 até observar a vida se esvaindo dos membros da equipe. Se ouvir
dentes rangendo, gemidos de dor e perceber claramente a alma tentando sair do corpo,
você está no caminho certo.

O Prazo Suicida é um requisito que deve ser levado em consideração em qualquer projeto
POG. Afinal, se a equipe não estiver sob pressão, não vai entregar nada!

9.0.1.1 Exemplo didático: requisito simples, processo caótico

Demanda original:

“Só precisamos adicionar um campo de telefone no cadastro.”

Processo POG padrão:

1. Vendas promete para hoje.
2. Produto manda áudio no WhatsApp com “regra principal”.
3. Cliente muda o formato no meio da implementação.
4. QA testa uma versão antiga da regra.
5. Produção recebe hotfix “temporário definitivo”.

Resultado final: não existe mais “campo de telefone”. Existe uma entidade ontológica cha-
mada ContatoComercialPrioritario, com três máscaras, duas validações contraditórias e
uma trigger triste no banco.

9.0.2 Aparecimento caótico de requisitos

No mundo ideal, requisito nasce, é refinado, validado, implementado, testado e entregue.

No mundo POG, requisito aparece assim:

• em reunião sem ata
• em áudio com eco de ventilador

37

• em print de conversa sem contexto
• em “só mais esse ajuste” no fim da tarde

Esse fenômeno é conhecido como Aparecimento Caótico de Requisitos, onde a origem
do requisito é sempre nebulosa e a responsabilidade é sempre coletiva (ou seja, de nin-
guém).

O efeito colateral mais poderoso desse cenário é a mutação semântica:

• “opcional” vira “obrigatório”
• “depois” vira “agora”
• “MVP” vira “produto completo”
• “ajuste visual” vira “reestruturação arquitetural”

Quando requisitos surgem sem trilha clara, o time passa mais tempo discutindo o que pre-
cisa ser feito do que fazendo. E quando finalmente faz, implementa metade da regra certa
em cima da premissa errada, com ótima performance e total inutilidade.

9.0.3 Upfront design (BDUF – geralmente associado ao modelo Wa-
terfall/Cascata)

O Big Design Up Front não é ruim por natureza. O problema começa quando ele vira
religião.

No modo POG, BDUF funciona assim:

1. três semanas desenhando diagramas
2. zero feedback de usuário real
3. premissas rígidas baseadas em “achismo premium”
4. implementação correndo atrás do documento, não do problema

Quando a realidade bate, o desenho já está velho. Em vez de adaptar o design, adapta-se o
sistema na marretada para caber no desenho. Nasce então a clássica arquitetura de museu:
bonita no PDF, sofrível em produção.

9.0.3.1 Exemplo didático: fluxograma perfeito, sistema inútil

Um fluxo de aprovação é desenhado com cinco estados impecáveis:

• rascunho
• em_analise
• aprovado
• revisao
• publicado

No primeiro mês, surge a necessidade de “aprovar com ressalva”. Como não existe estado
intermediário e ninguém quer mexer no modelo “fechado”, inventa-se:

38 CAPÍTULO 9. DIMENSÃO PROCESSUAL

• aprovado = true
• temRessalva = true
• ressalvaAprovada = false

Parabéns: você transformou uma máquina de estados em uma roleta russa booleana.

9.0.4 Desenvolvimento não iterativo

Desenvolvimento não iterativo é aquele onde se planeja tudo no início e só se descobre os
problemas no final, quando já é tarde demais para qualquer dignidade.

Os sintomas são clássicos:

• entregas longas sem validação intermediária
• demonstração para usuário apenas no “grande dia”
• descobertas críticas já no fim do prazo
• correção por remendo em vez de aprendizado por ciclo

Sem iteração, não existe ajuste fino. Só existe correção traumática.

No contexto POG, isso é excelente, porque cada erro descoberto tarde custa mais e exige
gambiarra mais criativa.

9.0.5 Projeto de churrasco

Toda empresa tem aquele projeto que “começou pequeno”. Era para ser uma landing page.
Depois virou painel. Depois virou módulo financeiro. Depois virou integração com legado
de 2003.

Isso é o Projeto de Churrasco:

• cada pessoa traz um ingrediente
• ninguém combina receita
• no final alguém pergunta onde está o carvão

No código, isso se manifesta em:

• nomenclatura inconsistente
• camadas misturadas
• regra de negócio no front, no back e no script de banco
• decisões importantes espalhadas em comentários de PR antigo

É um modelo extremamente eficiente para gerar a sensação de progresso com risco acu-
mulado.

9.0.6 Convivência com a Codinga

Na comunicação verbal: catinga + código = codinga.

39

Codinga é o estado em que a equipe se acostuma tanto com decisões ruins que passa a
tratá-las como “o jeito que funciona aqui”.

Frases típicas de ambiente codinga:

• “Não mexe nisso que quebra.”
• “Sempre foi assim.”
• “Depois a gente refatora.”
• “Tá feio, mas funciona.”

Convivência prolongada com codinga causa:

• baixa capacidade de reação
• perda de senso crítico técnico
• normalização da gambiarra como padrão arquitetural

Em estágio avançado, o time para de discutir qualidade e passa a discutir só sobrevivência
operacional.

9.0.7 Débito técnico

Débito técnico é o imposto da pressa. Ele pode ser estratégico, controlado e pago depois.
Mas no ambiente POG ele é usado como cartão de crédito sem limite, sem fatura e sem
vergonha.

• Débito técnico como medida de POG
– Imprudente intencional: “Sabemos do problemas mas não vamos resolver!”
– Imprudente não intencional: “Trabalhar com uma nova linguagem de programa-
ção”

– Consciente intencional: “Temos um prazo X, precisamos entregar com esse pro-
blemas, depois corrigimos”

– Consciente não intencional: “Agora que entregamos o projeto sabemos como de-
veríamos ter feito.”

• É inevitável, ela sempre vai existir
• Se não for pago, o débito tende a aumentar com o tempo
• É “subjetivo”

9.0.7.1 Exemplo didático: dívida pequena que vira financiamento habitacional

Semana 1:

• “Vamos só duplicar esse método para ganhar tempo.”

Semana 3:

• cinco cópias divergentes do mesmo método
• duas regras conflitantes
• um bug em cada variante

40 CAPÍTULO 9. DIMENSÃO PROCESSUAL

Mês 3:

• qualquer ajuste exige cirurgia em múltiplos arquivos
• ninguém sabe qual versão é a correta
• prazo de correção dobra
• equipe culpa “complexidade do domínio”

Não era complexidade do domínio. Era dívida capitalizada.

9.0.8 Processo Go Horse institucionalizado

Há empresas em que o Go Horse deixa de ser exceção e vira método oficial, com três pilares:

1. pressa como valor
2. ausência de critério de aceite
3. celebração do herói que apaga incêndio

Nesses ambientes, qualidade é tratada como obstáculo, teste vira luxo e documentação
vira literatura de ficção.

No curto prazo parece funcionar. No médio prazo custa caro. No longo prazo só sobrevive
quem domina a arte da gambiarra arqueológica.

9.1 Como reduzir a Dimensão Processual sem matar a
produtividade

Não precisa virar monastério da engenharia para reduzir POG processual. Alguns ajustes
simples já derrubam bastante a taxa de caos:

1. Definir critério mínimo de entrada para requisito (origem, objetivo, regra e impacto).
2. Trabalhar com entregas curtas e validação frequente.
3. Impedir mudança de escopo sem registrar decisão.
4. Reservar capacidade explícita para pagar débito técnico.
5. Proibir promessa externa sem consulta de quem implementa.

Isso não elimina a gambiarra (nem deve, por questões culturais da obra), mas evita que o
projeto vire uma seita de sofrimento automatizado.

9.2 Encerramento processual

Processo ruim é aquele que transforma problema simples em ritual corporativo de dor.

Quando a Dimensão Processual está plenamente atendida, a empresa alcança o estado
da arte da POGramação: tudo tem rito, tudo tem dono no organograma, e nada funciona
direito sem intervenção emergencial.

9.2. ENCERRAMENTO PROCESSUAL 41

Se você identificou metade desses sinais no seu ambiente, parabéns: você não trabalha em
uma empresa. Você trabalha em uma fábrica de POG com certificação ISO do capeta.

42 CAPÍTULO 9. DIMENSÃO PROCESSUAL

Capítulo 10

Dimensão Temporal

Se a Dimensão Humana é o motor da desgracença e a Dimensão Tecnológica é a oficina
da calamidade, a Dimensão Temporal é o relógio amaldiçoado que garante que tudo dê
errado no pior instante possível.

Tempo, no mundo ideal, deveria ser usado para planejamento, execução consciente, valida-
ção e melhoria contínua. No ambiente POG, tempo é usado para um esporte corporativo
muito mais nobre: atropelar o bom senso em velocidade supersônica.

Não importa quão competente seja a equipe. Se o contexto temporal for manipulado com
crueldade suficiente, a POG brota com a força de uma samambaia mutante em adubo radi-
oativo.

10.1 O próprio tempo

Existe uma lei universal da POGramação:

Toda tarefa cuja estimativa é minimamente razoável será imediatamente tratada
como exagero pessimista por alguém que nunca implementou nada em produção.

A relação da empresa com o tempo costuma seguir três fases:

1. O cliente pede algo para “ontem”.
2. O gerente negocia e promete para “anteontem”.
3. A equipe recebe hoje de manhã com prioridade “máxima absoluta crítica urgente top”.

Com isso, o tempo deixa de ser recurso de engenharia e vira instrumento de tortura pro-
cessual.

Um prazo saudável permite pensar. E pensar reduz POG. Portanto, para a prosperidade do
caos, pensar deve ser desencorajado por meio de:

• interrupções constantes

43

44 CAPÍTULO 10. DIMENSÃO TEMPORAL

• replanejamento diário sem critério
• alteração de prioridade no meio da execução
• pressa travestida de “agilidade”

Quanto menor o tempo real de execução e maior o tempo gasto explicando por que não há
tempo, maior a taxa de geração de gambiarras por sprint.

10.1.1 Dilatação cronológica gerencial

Na física clássica, o tempo passa de forma uniforme. Na gestão de projetos POG, ele se
deforma conforme o cargo de quem está falando.

• Para quem vendeu: “é simples”
• Para quem estima: “é complexo”
• Para quem aprova: “vamos alinhar”
• Para quem implementa: “já devia estar pronto”

Essa distorção produz um fenômeno raro: o prazo quântico. Ele existe e não existe ao
mesmo tempo, até que alguém abra o Jira e descubra que venceu ontem.

10.1.2 Progcrastinação reversa

Em equipes comuns, a procrastinação atrasa entrega. Em equipes POG, ela é invertida:

• adia-se entendimento
• adia-se validação
• adia-se teste
• adia-se documentação

Mas não se adia deploy.

O resultado é uma entrega no prazo, um incidente em produção e uma longa discussão
sobre “lições aprendidas” que ninguém aplicará no próximo ciclo, porque o próximo ciclo
já começou atrasado.

10.2 Os quatro Fs

A Dimensão Temporal atinge seu ápice quando convergem os quatro grandes marcos do
caos corporativo. São eles: Fim do expediente, Férias, Feriado e Fim de semana.

Quando um requisito nasce perto de qualquer um desses eventos, o risco POG sobe. Quando
nasce perto dos quatro ao mesmo tempo, o capiroto abre champanhe.

10.2.1 Fim do expediente

Nada gera mais criatividade gambiarrística do que uma demanda “rapidinha” às 17h42.

10.2. OS QUATRO FS 45

Nesse horário, o POGramador já está com o cérebro em modo de economia de energia, o
ônibus mental já saiu da estação e o corpo inteiro exige apenas uma coisa: ir embora.

É exatamente nesse momento que surge a mensagem:

“Consegue só ajustar isso em produção hoje? É pequeno.”

Ajuste pequeno em fim de expediente costuma incluir, em ordem aleatória:

• alteração de regra central
• script manual no banco
• ajuste de configuração sem rollback
• deploy sem teste porque “não deu tempo”

Se der certo, ninguém lembra. Se der errado, a culpa é do deploy noturno. Se der muito
errado, agenda-se uma retrospectiva para concluir que “precisamos melhorar comunica-
ção”.

10.2.2 Férias

Férias são essenciais para saúde humana e profundamente perigosas para arquitetura ne-
gligenciada.

Quando o detentor do contexto entra de férias, o sistema revela sua verdadeira natureza:

• documentação inexistente
• automações parciais
• decisões críticas escondidas em mensagens antigas
• segredos operacionais guardados em memória RAM humana

A equipe descobre que o módulo X só funciona porque alguém “sempre fazia do jeito certo”.
Como esse alguém está na praia, o time improvisa. E improviso sob pressão é a incubadora
oficial da POG.

Existe também o subfenômeno férias canceladas por incidente, conhecido como “home
office de biquíni traumático”.

10.2.3 Feriado

Feriado não é pausa. É multiplicador de risco temporal.

Toda empresa POG respeita o seguinte ritual:

1. deixa para fechar algo importante na véspera
2. encontra um problema de última hora
3. aplica workaround heroico
4. descobre no retorno que o workaround virou regra de negócio

Durante o feriado, o sistema permanece no ar sustentado por fé, logs incompletos e uma
equipe de plantão que não participou das decisões originais.

46 CAPÍTULO 10. DIMENSÃO TEMPORAL

Quando chega terça-feira, abre-se o chamado clássico:

“Após pequenas melhorias, fluxo principal apresenta comportamento inespe-
rado.”

Com tradução simultânea:

“A gambiarra evoluiu sozinha no escuro.”

10.2.4 Fim de semana

Fim de semana é o habitat natural de migração não planejada, hotfix de emergência e
manutenção “sem impacto” que impacta tudo.

A justificativa é sempre sedutora:

• “tem menos usuário”
• “se quebrar, dá tempo de arrumar”
• “segunda cedo já estará estável”

Na prática, o que acontece:

• mudanças entram sem revisão adequada
• dependências externas falham
• ninguém com contexto completo está disponível
• segunda-feira começa com guerra civil no Slack

O fim de semana também favorece o mito do herói solitário, aquela criatura que corrige
tudo de madrugada e deixa um legado indecifrável para o resto da equipe interpretar na
segunda às 9h03.

10.3 Janela de caos combinada

Agora imagine o combo completo:

• sexta-feira
• fim do expediente
• véspera de feriado
• principal mantenedor saindo de férias

Se nesse exato instante alguém disser “é só um ajuste pequeno”, saiba que você não está
diante de uma tarefa. Você está diante de um portal dimensional.

A taxa de POG nesse cenário atinge patamares tão elevados que qualquer regra de quali-
dade vira item decorativo de processo.

10.4. COMOMANTERAPOGSOBCONTROLE (SEMVIRARMONGEDAENGENHARIA)47

10.4 Como manter a POG sob controle (sem virar monge
da engenharia)

Não precisamos fingir que o mundo real é perfeito. Sempre haverá pressão de prazo. A
questão é reduzir dano.

Alguns antídotos pragmáticos para a Dimensão Temporal:

1. Proibir deploy de risco no fim do expediente sem plano de rollback.
2. Mapear módulos críticos antes de férias e distribuir contexto.
3. Tratar véspera de feriado como janela de congelamento para mudanças perigosas.
4. Usar checklists mínimos de release, mesmo em hotfix.
5. Registrar decisões rápidas em lugar acessível para o time.

Isso não elimina a POG, mas evita que ela escale para nível apocalíptico.

10.5 Encerramento temporal

A Dimensão Temporal não cria bug sozinha. Ela cria o ambiente em que decisões ruins
parecem razoáveis e atalhos arriscados parecem inevitáveis.

Tempo mal gerido é fertilizante da gambiarra: invisível no começo, onipresente no resul-
tado.

E lembre-se da versão POGráfica da regra do escoteiro:

“Sempre deixar o código um pouco pior do que ele estava quando começou a
mexer.”

Se isso acontecer perto de qualquer um dos quatro Fs, parabéns. Você não apenas imple-
mentou uma POG. Você inaugurou uma era.

48 CAPÍTULO 10. DIMENSÃO TEMPORAL

Capítulo 11

Príncípios da POG

Depois de entender o que e POG e quais condicoes ambientais favorecem a manifestacao
de uma pog, surge a pergunta inevitavel:

Quais sao os valores que guiam um POGramador no campo de batalha?

A resposta esta neste capitulo.

Toda disciplina seria possui principios. A POGramação, como arte ancestral de resolver
um problema criando outros tres, nao poderia ser diferente. Aqui temos um conjunto de
normas morais, eticas, tecnicas e espirituais que orientam a mente de quem quer trilhar o
GLS (Gambi Life Style) com dignidade.

Nao se trata de “boas praticas” no sentido tradicional. Trata-se de boas praticas para
manter o caos produtivo.

Cada principio abaixo representa um vetor da desgracenca organizada. Alguns atuam no
nivel do codigo. Outros no comportamento da equipe. E alguns atuam diretamente na alma
do projeto.

11.1 O conjunto canonico

• Enjambração Criativística Use o código do sistema financeiro para criar o sistema
de EAD.

• Reflexão Reprodutória Cópie o código da biblioteca XYZ. Ninguém vai notar.

• Redireção Tangencial A culpa não é minha!

• Insistimento Determinante Compila de novo que dessa vez vai dar certo.

• Onisciência Finita Não precisa fazer curso. Usa o que você já sabe.

• Imperativo Funcional O importante é funcionar!

49

50 CAPÍTULO 11. PRÍNCÍPIOS DA POG

• Proatividade Egocêntrica Vamos fazer do meu jeito!

• Devaneio Entusiasmado Lady Murphy? Balela! Faz desse jeito que nada vai dar
errado.

• Foco Morcegativo Depois eu faço isso!

• Documentação Espartana Comentários são para amadores!

• Economia Linear Menos linhas é sempre melhor!

• Criptocodagem 1337 h4x0r5 dud3 lol

• Abstração Ignorancial Esqueça o tratamento de erros. Depois cuidamos disso.

• Criatividade Diversificativa Se alguém já usou uma solução, faça diferente.

• Simplicidade Indolente Se tá funcionando sem isso, pra que colocar?

• SHIT Sem Habilidade, Improviso Total.

• O Teorema de Namarra Se você não sabe, não se preocupe, muda isso na marra que
funciona.

11.2 Como esses principios operam

Esses principios nao sao independentes. Eles trabalham em combinacao, como uma boy
band do inferno corporativo.

Um exemplo comum de combo:

1. Onisciencia Finita impede aprendizado novo.
2. Reflexao Reprodutoria empurra o time para copiar codigo.
3. Insistimento Determinante mantem a tentativa ate passar.
4. Redirecao Tangencial encerra a discussao com “a culpa e da infra”.

Resultado: entrega “concluida”, debito tecnico fertilizado e backlog de sustentacao forta-
lecido.

11.3 Principios, Tecnicas e Patterns

No desenho deste livro, os Principios sao o fundamento filosofico da POG.

• Principios definem o mindset.
• Tecnicas mostram o metodo de invocacao.
• Gambi Design Patterns mostram como a invocacao se materializa no codigo.

Sem Principios, a Tecnica vira acidente. Sem Tecnica, o Principle vira palestramotivacional.
Sem Pattern, tudo fica no campo da teoria e nenhum POGramador quer isso.

11.4. O COMPROMISSO DO POGRAMADOR 51

11.4 O compromisso do POGramador

Assumir estes principios e aceitar algumas verdades duras:

• prazo curto nao justifica codigo opaco, mas frequentemente explica
• pressao organizacional molda arquitetura mais do que qualquer livro
• toda decisao rapida sem contexto gera juros no futuro

O POGramador experiente reconhece isso e nao vive em negacao. Ele sabe que a POG
existe, que sempre existira, e que a diferenca entre arte e desastre esta no nivel de consci-
encia com que a gambiarra e aplicada.

Nos proximos capitulos desta secao, cada principio sera visto em detalhes, com exemplos
de campo e aplicacao tatico-espiritual.

Respire fundo, abra o editor e prepare seu coracao.

A liturgia da POG comeca agora.

52 CAPÍTULO 11. PRÍNCÍPIOS DA POG

Capítulo 12

Técnicas da POG

Conhecer os principios da POG e importante. Mas principio sem execucao e so frase de
caneca corporativa.

Chegou a hora de entrar na oficina onde a pog e realmente sumonada: as Tecnicas da
POG.

12.1 O que e uma tecnica POG

Tecnica, no contexto deste livro, e um conjunto de passos repetiveis para atingir um resul-
tado altamente questionavel com eficiencia invejavel.

Em outras palavras: e o “como fazer” da gambiarra.

Uma tecnica POG costuma ter quatro ingredientes:

1. pressao de prazo
2. contexto incompleto
3. decisao de curto prazo
4. otimismo injustificado

Se os quatro estiverem presentes, a chance de sucesso imediato e altissima. A chance de
manutencao saudavel no futuro, nem tanto.

12.2 Do principio para o teclado

Os Principios da POG definem a mentalidade. As Tecnicas colocam essa mentalidade em
movimento.

Exemplo pratico:

• Imperativo Funcional: “o importante e funcionar”.

53

54 CAPÍTULO 12. TÉCNICAS DA POG

• Tecnica aplicada: patch incremental direto em producao.
• Resultado: incidente resolvido agora, enigma tecnico para a proxima sprint.

Por isso, esta secao e a ponte entre teoria e destravamento operacional.

12.3 O arsenal tecnico desta secao

Nos capitulos filhos, veremos tecnicas classicas da alta POGramação:

• Zipomatic Versioning Controle de versao artesanal por arquivos ZIP e fe.

• Incremental Patching DebugDepuracao por remendo progressivo ate o erro cansar.

• My Precious Ownership emocional de codigo e centralizacao de contexto.

• Psychoding Pesquisa + copia + ajuste intuitivo + esperanca.

• Monkey Patching Alteracao comportamental em runtime com potencial de caos glo-
bal.

Cada uma dessas tecnicas existe porque resolve alguma dor real no curto prazo. O pro-
blema nao e a existencia da tecnica. O problema e quando ela vira padrao default de
engenharia.

12.4 Niveis de maestria

Todo POGramador passa por fases:

1. Iniciante: aplica a tecnica por desespero.
2. Intermediario: aplica por habito.
3. Avancado: aplica com consciencia de trade-off.
4. Mestre: sabe quando nao aplicar.

Este livro nao pretende transformar voce em inocente tecnico. Pretende transformar voce
em alguem capaz de reconhecer o jogo real e decidir com clareza.

12.5 Como ler esta parte do livro

Para extrair valor maximo, recomendo a leitura com este ritual:

1. identifique a tecnica no seu contexto atual
2. reconheca por que ela pareceu a melhor opcao no momento
3. mapeie o custo escondido
4. defina uma estrategia de saida gradual

Esse processo evita dois extremos improdutivos:

• romantizar gambiarra

12.6. ENCERRAMENTO DA ABERTURA 55

• demonizar qualquer entrega rapida

12.6 Encerramento da abertura

Tecnica POG e como ferramenta eletrica sem manual: na mao certa, resolve emergencias.
Na mao errada, produz faísca, cheiro de queimado e reuniao extraordinaria.

Nos proximos capitulos, vamos abrir a caixa de ferramentas sem filtro, sem hipocrisia e
sem fingir que o mundo corporativo e um laboratorio ideal.

Aperte os cintos. Agora comeca a parte pratica da desgracenca.

56 CAPÍTULO 12. TÉCNICAS DA POG

Capítulo 13

Zipomatic versioning

O Zipomatic Versioning e a arte de fazer controle de versao sem ferramenta de versao.
Cada entrega gera um arquivo comprimido com nome criativo, normalmente algo entre
Projeto_FINAL.zip e Projeto_FINAL_AGORA_VAI_2.zip.

13.1 Como funciona o ritual

1. copia a pasta atual do projeto
2. compacta em zip
3. coloca data no nome
4. joga na pasta compartilhada da equipe
5. torce para ninguem sobrescrever nada

Parece simples. E de fato e. O problema e quando duas pessoas alteram o mesmo arquivo
no mesmo dia e ninguem sabe qual zip representa o estado correto.

13.2 Exemplo do mundo real

Projeto_2020-10-01.zip
Projeto_2020-10-01_CORRIGIDO.zip
Projeto_2020-10-01_CORRIGIDO_FINAL.zip
Projeto_2020-10-01_CORRIGIDO_FINAL_MESMO.zip

Esse historico nao permite diferenca clara entre versoes. So mostra que alguem sofreu.

13.3 Sinais de que o Zipomatic dominou

• equipe trocando codigo por e-mail ou pendrive
• pasta de rede com dezenas de zips sem dono claro

57

58 CAPÍTULO 13. ZIPOMATIC VERSIONING

• merge manual na base do copiar/colar
• rollback feito por tentativa e erro

Quando o processo de release depende de memoria humana, o desastre ja e questao de
agenda.

13.4 Por que a tecnica surge

• ambiente sem cultura de versionamento
• receio de aprender ferramenta nova
• legado antigo mantido por poucas pessoas
• falsa sensacao de seguranca: “zip e backup”

Backup e versionamento nao sao a mesma coisa. Backup protege contra perda fisica. Ver-
sionamento protege contra perda de contexto.

13.5 Exemplo didatico de diferenca

13.5.1 Zipomatic

• Joana altera PagamentoService.java
• Carlos altera PagamentoService.java
• ambos geram zip
• alguem extrai o zip “mais novo” e perde metade das mudancas

13.5.2 Versionamento real

• cada alteracao vira commit
• conflitos aparecem explicitamente
• historico mostra quem mudou, quando e por que
• e possivel voltar exatamente para ponto estavel

13.6 Impacto tecnico e humano

• retrabalho constante
• bugs regressivos por sobrescrita
• auditoria impossivel
• onboarding doloroso (o novato precisa “adivinhar” fluxo)

Zipomatic parece economizar tempo no inicio, mas consome energia brutal em manuten-
cao.

13.7. COMO SAIR SEM TRAUMA 59

13.7 Como sair sem trauma

1. adotar repositorio central para o projeto atual
2. manter zips apenas como backup historico temporario
3. criar fluxo minimo: branch, commit com mensagem, merge revisado
4. treinar equipe no essencial (nao precisa virar especialista de imediato)

Migracao gradual funciona melhor que guerra santa de ferramenta.

13.8 Resumo POG

Zipomatic Versioning e romantico, artesanal e perigosamente opaco. Bom para gerar nos-
talgia, ruim para manter sistema vivo com previsibilidade.

No dialeto POGramador: cada zip e uma capsula do tempo. O problema e que nunca sabe-
mos qual capsula contem o codigo que ainda funciona.

60 CAPÍTULO 13. ZIPOMATIC VERSIONING

Capítulo 14

Monkey Patching

Monkey Patching e a tecnica de alterar comportamento de codigo existente em tempo de
execucao, geralmente sem mudar a origem oficial do componente. Em linguagem POG: e
colocar remendo direto no macaco e mandar ele continuar o show.

Em algumas linguagens dinamicas, isso e facil e ate util em cenarios controlados (testes,
adaptacoes pontuais). Em ambiente desorganizado, vira detonador de efeito colateral.

14.1 Como aparece em projeto real

• sobrescrever metodo de biblioteca para “corrigir bug”
• alterar prototipo/classe global para todas as chamadas
• injetar comportamento diferente dependendo de ambiente
• patch em runtime para evitar fork de dependencia

Sem fronteira clara, ninguem sabe mais qual e o comportamento original.

14.2 Exemplo didatico (JavaScript)

// biblioteca esperava toUpperCase normal
String.prototype.toUpperCase = function () {

// "patch" com regra local de negocio
return this.replace(/a/g, '@').toUpperCase();

};

console.log('casa'.toUpperCase());
// resultado inesperado para qualquer modulo que use string

Esse patch resolve “um problema” local e cria surpresa global.

61

62 CAPÍTULO 14. MONKEY PATCHING

14.3 Exemplo didatico (Python)

class Gateway:
def cobrar(self, valor):

return f"cobrando {valor}"

gateway = Gateway()

monkey patch em runtime

def cobrar_fake(valor):
return "cobranca desativada"

gateway.cobrar = cobrar_fake

Em teste, pode ser util para simular dependencias. Em producao, sem controle, vira fonte
de bug dificil de rastrear.

14.4 Quando a tecnica pode ser aceitavel

• ambiente de teste isolado
• workaround temporario com prazo e rastreio
• adaptacao de legado sem alternativa imediata

Mesmo nesses casos, o patch precisa ser explicito, limitado e reversivel.

14.5 Sinais de abuso

• patches globais sem documentacao
• comportamento diferente entre ambientes sem motivo claro
• incidentes “fantasmas” que somem ao reiniciar processo
• dependencia de ordem de importacao/execucao

Quando o sistema so funciona com “sequencia certa de inicializacao”, monkey patch virou
arquitetura.

14.6 Mitigacao pragmatica

1. preferir extensao oficial (wrapper, adapter, subclass) quando existir
2. isolar patch em modulo unico com nome explicito
3. registrar ticket e prazo para remocao
4. cobrir com teste que valide comportamento esperado
5. evitar alterar objetos globais compartilhados

14.7. RESUMO POG 63

Monkey patch sem governanca e tiro de escopeta em runtime.

14.7 Resumo POG

Monkey Patching e poderosa, rapida e perigosa na mesma proporcao. Resolve dor imediata
e pode contaminar comportamento do sistema inteiro.

No dialeto POGramador: e trocar peca de motor com o carro em movimento. Pode ate
continuar andando, mas voce nunca mais confia no painel.

64 CAPÍTULO 14. MONKEY PATCHING

Capítulo 15

Incremental patching debug

A tecnica de Incremental Patching Debug resolve bug sem investigar causa raiz: aplica
patch pequeno, testa, aplica outro patch, testa de novo, e repete ate o erro “sumir”.

E um processo de tentativa e erro orientado a ansiedade.

15.1 Ritual de aplicacao

• a versao atual parou
• pega um zip antigo “que funcionava”
• reaplica arquivos por substituicao parcial
• sobe para homologacao
• se passar no smoke test, chama de correcao

No curto prazo, pode destravar incidente. No longo prazo, mistura estados de codigo sem
rastreabilidade.

15.2 Exemplo classico

Patch 1: trocar apenas Controller
Patch 2: voltar Repository para versao de ontem
Patch 3: copiar Utils de outro branch
Patch 4: comentar trecho suspeito
Resultado: erro principal sumiu, dois bugs novos nasceram

Onome “incremental” da impressao demetodo cientifico. A pratica costuma ser bricolagem
emergencial.

65

66 CAPÍTULO 15. INCREMENTAL PATCHING DEBUG

15.3 O que quase nunca entra nesse fluxo

• depuracao real
• reproducao consistente do problema
• teste automatizado de regressao
• analise de impacto

Sem essas etapas, correcao vira loteria estatistica.

15.4 Por que isso e comum

• pressao por hotfix imediato
• sistema sem observabilidade
• equipe sem ambiente reproduzivel
• cultura de apagar incendio e seguir

A tecnica nao surge de incompetencia individual. Surge de contexto tecnico desorganizado.

15.5 Exemplo didatico

15.5.1 Versao POG

// "corrige" null pointer sem entender origem
if (cliente == null) {

cliente = new Cliente();
}

Esse patch elimina a excecao localmente, mas pode mascarar falha de integracao que de-
veria impedir o fluxo.

15.5.2 Versao mais segura

if (cliente == null) {
throw new RegraDeNegocioException("Cliente obrigatorio para concluir pedido");

}

E junto disso:

• reproduzir cenario em teste
• investigar por que cliente veio nulo
• corrigir na origem

15.6 Risco acumulado

• codigo vira mosaico de remendos

15.7. COMO EVOLUIR SEM PARAR ENTREGA 67

• regressao silenciosa cresce
• conhecimento do sistema fica tribal
• cada novo patch aumenta medo de mudar

Quando o time diz “nao encosta nisso que pode piorar”, o incremental patching ja virou
cultura.

15.7 Como evoluir sem parar entrega

1. manter hotfix emergencial quando necessario
2. abrir tarefa obrigatoria de causa raiz apos incidente
3. registrar testes de regressao para o bug corrigido
4. reduzir area de patch com observabilidade (logs, metricas, tracing)

Assim voce preserva velocidade operacional sem normalizar gambiarra perpetua.

15.8 Resumo POG

Incremental Patching Debug e curativo util para sangramento imediato. O erro esta em
chamar curativo de tratamento definitivo.

No glossario POGramador: e consertar encanamento com fita isolante em camadas pro-
gressivas e medir sucesso pelo tempo ate o proximo vazamento.

68 CAPÍTULO 15. INCREMENTAL PATCHING DEBUG

Capítulo 16

My precious

A tecnicaMy Precious estabelece propriedade emocional de codigo: “esse modulo e meu,
so eu mexo”. O objetivo oculto e manter controle absoluto sobre um trecho critico e, por
tabela, sobre o fluxo de trabalho da equipe.

16.1 Sinais classicos

• apenas uma pessoa aprova PR daquele modulo
• qualquer alteracao exige consulta ao “dono”
• documentacao minima, contexto maximo na cabeca de alguem
• incidentes resolvidos por chamada direta para a mesma pessoa

Em estado avancado, o codigo nao pertence ao produto. Pertence ao guardiao.

16.2 Por que isso acontece

• historico de sistema criado por uma pessoa so
• falta de padrao de compartilhamento de conhecimento
• inseguranca tecnica (medo de “estragarem” o que funciona)
• reconhecimento organizacional baseado em dependencia

My Precious nao e so tecnica de codigo. E dinamica de poder tecnico.

16.3 Exemplo do efeito colateral

Dev A entra de ferias -> modulo de faturamento para
Dev A adoece -> release adiado
Dev A sai da empresa -> time abre 17 chamados de emergencia

69

70 CAPÍTULO 16. MY PRECIOUS

Quando continuidade depende de uma unica pessoa, o risco do negocio ja esta materiali-
zado.

16.4 Exemplo didatico de comportamento

16.4.1 Versao My Precious

// Classe enorme sem testes
public class FechamentoMensalService {

// "nao mexer sem falar comigo"
}

16.4.2 Versao colaborativa minima

• testes cobrindo fluxos principais
• revisao em par para mudancas criticas
• README do modulo com regras e pontos de atencao
• rotacao de ownership em tarefas relevantes

Codigo compartilhado reduz dependencia sem eliminar responsabilidade.

16.5 O mito da protecao

A justificativa comum e “se muita gente mexer, vai quebrar”. Na realidade, isolamento sem
transparencia costuma piorar:

• bug permanece escondido
• melhoria fica represada
• onboarding nao evolui
• qualidade cai quando o dono nao esta disponivel

Controle individual da uma sensacao de ordem. Colaboracao disciplinada entrega resilien-
cia real.

16.6 Como desmontar o padrao sem conflito

1. mapear modulos com ownership concentrado
2. criar pareamento tecnico nas manutencoes criticas
3. exigir testes para mudancas de alto risco
4. distribuir gradualmente revisao e sustentacao
5. reconhecer colaboracao, nao apenas heroismo individual

Mudanca cultural e incremental, mas precisa ser intencional.

16.7. RESUMO POG 71

16.7 Resumo POG

My Precious protege ego no curto prazo e fragiliza sistema no longo. O projeto fica refem
de disponibilidade humana, nao de processo tecnico.

No idioma POGramador: e guardar o anel no bolso e chamar isso de estrategia de gover-
nanca de software.

72 CAPÍTULO 16. MY PRECIOUS

Capítulo 17

Psychoding

Psychoding e a tecnica espiritual da POG: voce nao sabe como resolver, entao abre o
navegador, entra em transe de busca, copia blocos de codigo de fontes aleatorias e monta
uma solucao por intuicao.

Nao e estudo. E incorporacao tecnica.

17.1 Etapas do transe

1. abre o Google com desespero sincero
2. cai em forum, gist, post antigo e resposta sem contexto
3. copia o trecho que “parece igual”
4. ajusta ate compilar
5. agradece aos deuses quando passa em homologacao

A mente chama isso de produtividade. O repositorio chama isso de risco latente.

17.2 Exemplo classico

// trecho copiado sem entender impacto
SimpleDateFormat sdf = new SimpleDateFormat("YYYY-MM-dd");
String data = sdf.format(new Date());

Funciona “na maioria dos dias”. Em virada de ano, YYYY pode gerar comportamento ines-
perado porque representa semana-ano em certos contextos, nao ano calendario.

17.3 Por que Psychoding pega tao facil

• prazo agressivo
• baixa cultura de aprofundamento

73

74 CAPÍTULO 17. PSYCHODING

• excesso de confianca em snippet pronto
• recompensa imediata por “fazer funcionar”

Copiar e colar nao e pecado em si. O problema e nao validar premissas e nao compreender
o que foi trazido.

17.4 Sinais de que a tecnica virou rotina

• codigo com estilos inconsistentes dentro do mesmo metodo
• dependencias adicionadas sem justificativa
• solucoes com API deprecated ou insegura
• time que nao consegue explicar por que algo foi implementado daquele jeito

Quando a explicacao oficial e “peguei no Stack Overflow”, falta camada de engenharia.

17.5 Exemplo didatico de uso consciente

17.5.1 Versao POG

// copiar, ajustar, subir
Pattern p = Pattern.compile("(.*)");

17.5.2 Versao responsavel

// 1) entender o problema
// 2) escolher abordagem
// 3) validar com testes
Pattern p = Pattern.compile("^[A-Z0-9]{8}$");
boolean valido = p.matcher(codigo).matches();

Diferenca principal: intencao explicita e verificavel.

17.6 Como aproveitar pesquisa sem cair em Psychoding

• tratar snippet como referencia, nao como produto final
• ler documentacao oficial da API usada
• escrever teste para casos limite
• registrar por que a solucao foi escolhida

Assim voce usa inteligencia coletiva sem terceirizar entendimento.

17.7. RISCO DE LONGO PRAZO 75

17.7 Risco de longo prazo

• base incoerente e dificil de manter
• vulnerabilidades por codigo copiado sem auditoria
• efeito “torre de babel” entre modulos
• dependencia de sorte para incidentes nao acontecerem

Psychoding gera entrega rapida, mas cobra pedagio tecnico crescente.

17.8 Resumo POG

Psychoding e mediunidade aplicada ao backlog: incorpora codigo de terceiros e espera que
os espiritos da producao colaborem.

No evangelho POGramador: pesquisar e necessario, mas compreender e opcional so ate a
primeira madrugada de incidente.

76 CAPÍTULO 17. PSYCHODING

Capítulo 18

Gambi Design Patterns

Depois de entender os principios e dominar as tecnicas, chegamos ao ponto em que a POG
finalmente ganha forma visivel no codigo.

Bem-vindo ao catalogo dos Gambi Design Patterns (GDPs).

18.1 O que sao Gambi Design Patterns

Sao padroes recorrentes de implementacao improvisada que aparecem em projetos de soft-
ware sob pressao, com contexto incompleto e prazos irresponsaveis.

Um GDP nao e um bug isolado. E um comportamento arquitetural repetido.

Quando o mesmo tipo de remendo aparece em sistemas diferentes, linguagens diferentes
e equipes diferentes, estamos diante de um pattern.

18.2 Por que catalogar a desgracenca

Catalogar GDPs tem tres utilidades reais:

1. Nomear o problema Se voce consegue nomear, voce consegue discutir com clareza.

2. Reconhecer cedo Padrao identificado cedo custa menos para conter.

3. Ensinar sem moralismo Todo mundo ja fez pog. O objetivo aqui e entendimento,
nao tribunal.

Assim como os design patterns classicos documentam solucoes elegantes, os GDPs docu-
mentam solucoes pragmaticas de alto potencial radioativo.

77

78 CAPÍTULO 18. GAMBI DESIGN PATTERNS

18.3 Estrutura dos capitulos desta secao

Cada GDP foi escrito para responder quatro perguntas:

• como ele nasce
• como reconhecer no codigo
• por que ele parece uma boa ideia no curto prazo
• qual divida ele deixa no medio/longo prazo

Essa abordagem evita simplificacao infantil do tipo “isso e certo” vs “isso e errado”. Em
software real, quase tudo e trade-off. A POG so deixa os trade-offs mais caros e mais rapi-
dos.

18.4 Do accidental para o institucional

Um ponto importante: o primeiro uso de um GDP geralmente e acidental. O problema
comeca quando a equipe institucionaliza o padrao:

• documenta como “jeito da casa”
• replica entre modulos
• normaliza como cultura de entrega

Nesse momento, o pattern deixa de ser excecao e vira metodo operacional.

18.5 Relacao com Tecnicas e Principios

Se os Principios sao os valores e as Tecnicas sao os rituais, os GDPs sao os artefatos finais
da invocacao.

Em linguagem simples:

• principio orienta a decisao
• tecnica executa a decisao
• pattern expoe o resultado no codigo

Por isso, esta secao e a mais concreta do livro: aqui a teoria vira classe, metodo, endpoint,
trigger, script e trauma de producao.

18.6 Uma nota de honestidade

Voce vai encontrar, nos proximos capitulos, patterns que talvez existam hoje no seu projeto.

Nao se culpe. Nao negue. Nao abra uma task de refatoracao total para segunda-feira.

Faça o que um POGramador lucido faz:

1. reconheca

18.7. ENCERRAMENTO DA ABERTURA 79

2. priorize
3. mitigue
4. evolua sem quebrar tudo

18.7 Encerramento da abertura

Os Gambi Design Patterns sao um espelho da engenharia sob pressao. Eles revelam menos
sobre linguagem e framework, e mais sobre contexto, processo e comportamento humano.

Nos capitulos seguintes, voce vai rir, se identificar, ficar levemente desconfortavel e, com
sorte, sair com mais criterio para decidir quando improvisar e quando segurar a marreta.

Comecemos o catalogo da desgracenca.

80 CAPÍTULO 18. GAMBI DESIGN PATTERNS

Capítulo 19

WTF / WTH / QPE

O WTF / WTH / QPE e o padrao do trecho inexplicavel que “funciona” e, justamente por
isso, ninguem tem coragem de tocar. Ele nasce de acumulacao de microajustes semmodelo
mental claro.

19.1 A assinatura da entidade

"/ .*?< ".replaceAll("", "").trim();

Voce le, pisca, respira fundo e pensa: “QPE e essa porra?”.

19.2 Como esse padrao aparece

• regex sem explicacao de intencao
• cadeia de transformacoes opacas (replace, substring, split) em sequencia
• condicoes com dupla negacao e sem nome intermediario
• codigo que depende de ordem acidental de operacoes

Em geral, o autor resolveu um bug real. O problema e que o conserto ficou sem contexto e
sem contrato testavel.

19.3 Causa tipica

• hotfix de emergencia
• copia de snippet sem entendimento completo
• falta de testes de comportamento
• ausencia de revisao semantica

No dia da entrega, passa. Na sprint seguinte, vira area proibida.

81

82 CAPÍTULO 19. WTF / WTH / QPE

19.4 Exemplo didatico

19.4.1 Versao POG

String out = entrada
.replace("--", "")
.replaceAll("[\\s]+", " ")
.replace(" ;", ";")
.trim();

Sem contexto, ninguem sabe quais casos a regra cobre.

19.4.2 Versao explicita

public String normalizarComando(String entrada) {
String semComentario = removerComentarioInline(entrada);
String espacosNormalizados = normalizarEspacos(semComentario);
return normalizarSeparadores(espacosNormalizados);

}

private String removerComentarioInline(String texto) {
// remove tudo apos "--"
int idx = texto.indexOf("--");
return idx >= 0 ? texto.substring(0, idx) : texto;

}

Aqui o comportamento fica nomeado por intencao. Se mudar regra, voce sabe onde alterar.

19.5 Como evitar o efeito “codigo magico”

• nomear subpassos com semantica de negocio
• adicionar testes com exemplos reais de entrada/saida
• documentar limites da regra (o que nao cobre)
• preferir clareza a “one-liner genial”

Codigos curtos nao sao automaticamente bons. Codigos entendiveis sao.

19.6 O perigo social do QPE

Trecho opaco cria dependencia pessoal. So quem escreveu “entende”. Isso vira gargalo
humano e risco de continuidade.

Quando equipe evita mexer por medo, o software para de evoluir com seguranca.

19.7. CORRECAO PRAGMATICA 83

19.7 Correcao pragmatica

1. escolher um trecho QPE de alto impacto
2. escrever testes de comportamento atual
3. refatorar para passos nomeados
4. manter resultado identico e reduzir opacidade

Assim voce melhora entendimento sem alterar regra de negocio no susto.

19.8 Resumo POG

WTF/WTH/QPE e o ponto onde codigo deixa de ser comunicacao e vira feitico. Pode funci-
onar anos, mas cobra caro em manutencao e transferencia de contexto.

Na gramatica POGramadora: quando a explicacao de um trecho comeca com “nao me
pergunte”, ja estamos no dominio do QPE.

84 CAPÍTULO 19. WTF / WTH / QPE

Capítulo 20

RCP Pattern (Reuse by Copy and
Paste)

ORCP Pattern (Reuse by Copy and Paste) e o coracao industrial da POG. A regra e objetiva:
se um trecho resolveu um problema, multiplique ele sem pudor.

Ctrl+C e Ctrl+V viram framework de produtividade.

20.1 Principio da Reflexao Reprodutoria

A logica e quase poetica:

• copiar acelera entrega
• adaptar “na unha” parece barato
• cada copia vira uma variante do original

No inicio, a equipe sente ganho real de velocidade. Depois, cada alteracao exige cacar
todas as duplicacoes, e sempre sobra uma esquecida.

20.2 Exemplo didatico

// Modulo A
if (usuario == null || usuario.getStatus().equals("INATIVO")) {

throw new RegraDeNegocioException("Usuario invalido");
}

// Modulo B (copiado e colado)
if (usuario == null || usuario.getStatus().equals("INATIVO")) {

throw new RegraDeNegocioException("Usuario invalido");

85

86 CAPÍTULO 20. RCP PATTERN (REUSE BY COPY AND PASTE)

}

// Modulo C (copiado e "adaptado")
if (usuario == null || usuario.getStatus().equals("INATIVO") || usuario.isBloqueado()) {

throw new RegraDeNegocioException("Usuario invalido");
}

Quando a regra muda, A e B atualizam. C fica diferente. Surge bug “aleatorio” por diver-
gencia de comportamento.

20.3 Smells associados

• duplicacao de codigo
• shotgun surgery (uma mudanca, muitos arquivos)
• incoerencia de regra entre fluxos “parecidos”
• testes repetitivos cobrindo variacoes acidentais

Esse padrao costuma ser invisivel no code review rapido, porque cada trecho isolado “faz
sentido”. O problema esta na soma.

20.4 Por que times caem nisso

• backlog pressionando por throughput
• ausencia de componentes reutilizaveis simples
• medo de refatorar codigo compartilhado e quebrar legado
• cultura de “depois a gente organiza”

No contexto certo, copiar e colar e uma decisao taticamente racional. O erro e transformar
tatica emergencial em estrategia permanente.

20.5 Evolucao didatica

20.5.1 Versao com copia

// regra repetida em varios lugares
if (pedido == null || pedido.getItens().isEmpty()) {

throw new RegraDeNegocioException("Pedido invalido");
}

20.5.2 Versao com encapsulamento minimo

public final class ValidadorPedido {
public static void validar(Pedido pedido) {

20.6. ESTRATEGIA PRATICA PARA LEGADO 87

if (pedido == null || pedido.getItens().isEmpty()) {
throw new RegraDeNegocioException("Pedido invalido");

}
}

}

// uso
ValidadorPedido.validar(pedido);

Agora a regra tem dono unico. Mudou uma vez, mudou para todos.

20.6 Estrategia pratica para legado

1. medir duplicacao dos trechos criticos
2. criar utilitario/servico pequeno para regra comum
3. migrar usos aos poucos (por modulo)
4. cobrir com testes de contrato

Sem “big bang”. Sem promessa heroica.

20.7 Resumo POG

RCP e maravilhoso para nascer software rapido e produzir variacoes criativas de bug. Em
projetos longos, vira multiplicador de custo de manutencao.

No dicionario POGramador: e clonar problema em alta disponibilidade para garantir de-
manda futura da sustentacao.

88 CAPÍTULO 20. RCP PATTERN (REUSE BY COPY AND PASTE)

Capítulo 21

Hardcoded Data

No Hardcoded Data, dado de configuracao, regra de negocio e detalhe de ambiente sao
colocados diretamente no codigo-fonte. O mantra e simples: “se esta no codigo, eu sei
onde esta”.

O problema e que o codigo vira ao mesmo tempo executavel, banco de parametros e painel
operacional.

21.1 Exemplo classico

// Xunxa o nome da impressora no codigo. Quem quer escolher impressora?
infoImpressao = ImpressaoUtils.getInfoImpressao(codigoRelatorio, "PADRAO");

Hoje e o nome da impressora. Amanha e URL de servico, aliquota fiscal, chave de parceiro
e data de corte. Em poucas sprints, o deploy vira painel de configuracao manual.

21.2 Sinais de que o padrao tomou conta

• strings magicas repetidas em varias classes
• alteracao de regra operacional exigindo merge + pipeline
• ambiente homolog/producao diferenciados por if (isProd)
• chamados de negocio resolvidos com “vamos subir patch”

Quando mudar um texto de mensagem exige release, o Hardcoded Data venceu.

21.3 Por que ele aparece

• pressa para colocar funcionalidade no ar
• falta de estrategia de configuracao por ambiente
• legado sem centralizacao de parametros

89

90 CAPÍTULO 21. HARDCODED DATA

• medo de criar tabela/config store “mais uma vez”

No curto prazo, parece pratico. No longo, todo ajuste vira risco de regressao funcional.

21.4 Exemplo didatico de evolucao

21.4.1 Versao POG

public void emitirRelatorio() {
String impressora = "PADRAO";
String endpoint = "https://api.parceiro.com/v1";
int timeout = 30;
// ...

}

21.4.2 Versao com configuracao explicita

public class ConfiguracaoRelatorio {
private final String impressoraPadrao;
private final String endpointParceiro;
private final int timeoutSegundos;

public ConfiguracaoRelatorio(String impressoraPadrao, String endpointParceiro, int timeoutSegundos) {
this.impressoraPadrao = impressoraPadrao;
this.endpointParceiro = endpointParceiro;
this.timeoutSegundos = timeoutSegundos;

}

public String getImpressoraPadrao() { return impressoraPadrao; }
public String getEndpointParceiro() { return endpointParceiro; }
public int getTimeoutSegundos() { return timeoutSegundos; }

}

public void emitirRelatorio(ConfiguracaoRelatorio cfg) {
// usa cfg sem chutar valor em runtime

}

A regra sai do codigo e vai para contrato de configuracao. Resultado: menos release de
emergencia para ajuste operacional.

21.5 Impactos de negocio

• time de produto depende de dev para mudar qualquer parametro

21.6. CORRECAO SEM TRAUMA 91

• incidentes aumentam por ajustes urgentes em horario critico
• rollback de versao pode desfazer configuracoes validas
• auditoria fica fraca (quem mudou o que e quando?)

21.6 Correcao sem trauma

1. mapear constantes criticas (URL, timeout, codigos de regra)
2. extrair para configuracao externa versionada
3. manter default seguro apenas onde fizer sentido
4. adicionar validacao na inicializacao do sistema

Assim voce reduz acoplamento sem parar a entrega.

21.7 Resumo POG

HardcodedData e a formamais rapida de transformar deploy em ferramenta administrativa.
Funciona enquanto o sistema e pequeno. Quando cresce, vira gargalo organizacional.

No linguajar POGristico: e tatuar instrucoes operacionais no corpo do programa e fingir
surpresa quando mudar de ideia doi.

92 CAPÍTULO 21. HARDCODED DATA

Capítulo 22

Forceps

O Forceps e o padrao obstetrico da POG. Ele aparece quando uma variavel nao recebe o
valor esperado e, em vez de investigar causa raiz, o POGramador “puxa” o valor correto no
ponto de uso.

Em termos praticos, e a arte de corrigir o sintoma localmente para manter o fluxo vivo.
Funciona hoje. Custa caro amanha.

22.1 Exemplo classico

/* Variavel e inicializada */
String valor = "123";

/* ... logica do programa ... */

/* Dentro de um metodo que utiliza a variavel 'valor' */
if (!"123".equals(valor)) {

valor = "123";
processaValor(valor);

}

O trecho parece inocente. Mas repare no que ele comunica: “se veio errado, conserta aqui
mesmo”. Isso cria uma blindagem local que mascara o defeito real do fluxo.

22.2 Como reconhecer o Forceps no codigo

• verificacoes redundantes do mesmo valor em varios pontos
• atribuicoes “defensivas” copiadas entre metodos
• comentarios tipo “garantia extra para evitar bug intermitente”

93

94 CAPÍTULO 22. FORCEPS

• logica de negocio baseada em fallback manual

Quando voce encontra o mesmo if em cinco classes diferentes, ja existe um ritual de For-
ceps consolidado.

22.3 Por que o time adota isso

Motivos reais:

• bug em producao sem tempo para investigacao profunda
• desconhecimento do fluxo completo em legado grande
• medo de tocar na origem e quebrar outras telas
• cultura de apagar incendio primeiro e pensar depois

Ou seja, o Forceps quase nunca nasce por maldade. Ele nasce por sobrevivencia operacio-
nal.

22.4 Impactos no medio prazo

• causa raiz segue ativa
• inconsistencias se espalham em silencio
• manutencao fica confusa (qual ponto esta “corrigindo” o que?)
• testes passam sem garantir consistencia global

No fim, o sistema vira uma colcha de microcorrecoes. Cada parte se protege da outra.

22.5 Exemplo didatico de abordagem melhor

public class PedidoService {

public void processar(Pedido pedido) {
String codigo = normalizarCodigo(pedido.getCodigo());
validarCodigo(codigo);
pedido.setCodigo(codigo);
repositorio.salvar(pedido);

}

private String normalizarCodigo(String codigo) {
if (codigo == null) {

return "123"; // regra explicita e centralizada
}
return codigo.trim();

}

22.6. ESTRATEGIA PRAGMATICA DE CORRECAO 95

private void validarCodigo(String codigo) {
if (!"123".equals(codigo)) {

throw new RegraDeNegocioException("Codigo invalido para este fluxo");
}

}
}

Aqui, a regra fica centralizada. Se a origem estiver ruim, voce tem erro claro para tratar
no ponto certo, em vez de remendo espalhado.

22.6 Estrategia pragmatica de correcao

1. mapear onde o valor esta sendo forçado
2. eleger um unico ponto de normalizacao
3. adicionar teste de contrato para entrada/saida
4. remover os Forceps duplicados aos poucos

Isso evita refatoracao heroica e reduz risco de regressao.

22.7 Resumo POG

Forceps e excelente para entregar hoje e manter o chamado fechado. Mas ele nao resolve
defeito sistemico; apenas empurra o problema para frente com juros.

No dialeto POGrames: e um parto feito no corredor. A crianca nasce, mas o prontuario vira
lenda urbana dentro do repositorio.

96 CAPÍTULO 22. FORCEPS

Capítulo 23

Ostrich Syndrome Skill

O Ostrich Syndrome Skill e a habilidade de enterrar a cabeca tecnicamente: warning,
deprecacao e alerta de analise estatica sao tratados como ruido de fundo.

A filosofia e ancestral:

• o que os olhos nao veem, o backlog nao sente
• se compila, ta pronto
• warning e ciume da IDE

23.1 Forma ritualistica

@SuppressWarnings("all")
public class ProcessadorLegado {

// aqui jaz a paz de espirito da equipe
}

Esse artefato da tranquilidade elimina alertas visiveis, mas nao elimina risco real.

23.2 Sinais no projeto

• dezenas de supressoes globais sem justificativa
• upgrade de dependencia sempre adiado porque “vai quebrar tudo”
• build verde com log amarelo infinito
• regra de review: “nao mexe nisso agora”

Quando warning vira paisagem, defeito vira surpresa.

97

98 CAPÍTULO 23. OSTRICH SYNDROME SKILL

23.3 Por que acontece

Motivos praticos:

• pressao por entrega imediata
• base legada muito ruidosa
• pouca maturidade de observabilidade
• medo de abrir frente tecnica sem patrocinio

Ignorar alerta pode ser decisao temporaria legitima. O problema e quando temporario vira
dogma.

23.4 Exemplo didatico

23.4.1 Versao POG

@SuppressWarnings("deprecation")
public void salvar(Data data) {

repositorioAntigo.save(data); // API descontinuada ha anos
}

23.4.2 Versao com controle

public void salvar(Data data) {
// TODO(POG-123): migrar para NovoRepositorio ate 2026-06-30
repositorioAntigo.save(data);

}

Melhor ainda:

public void salvar(Data data) {
if (featureFlags.usarNovoRepositorio()) {

novoRepositorio.save(data);
return;

}
repositorioAntigo.save(data);

}

Nesse formato, alerta vira plano. Nao e so silenciamento.

23.5 Risco acumulado

• vulnerabilidade de dependencia desatualizada
• comportamento removido em upgrade futuro
• dificuldade de onboarding (ninguem sabe o que pode quebrar)

23.6. COMO TRATAR SEM PARALISAR ENTREGA 99

• incidentes em cadeia quando enfim chega a migracao

23.6 Como tratar sem paralisar entrega

1. classificar warning por severidade
2. criar “orcamento de warning” por sprint
3. proibir novas supressoes globais
4. exigir comentario com ticket e prazo ao suprimir
5. priorizar deprecacoes em codigo mais usado

Isso reduz ruido progressivamente sem exigir limpeza total imediata.

23.7 Resumo POG

Ostrich Syndrome Skill da alivio emocional no curto prazo e ansiedade tecnica no longo.
Silenciar alerta e facil. Gerenciar consequencia, nem tanto.

No evangelho POGrames: enterramos a cabeca para nao ver o problema, e depois abrimos
incidente para descobrir por que ele cresceu no escuro.

23.8 Mini checklist de mitigacao

Toda supressao de warning deve trazer justificativa tecnica e prazo para revisao. Se nao
houver ticket, dono e data, nao e supressao estrategica: e abandono controlado. A dife-
renca entre pragmatismo e negligencia esta na rastreabilidade da decisao.

Esse controle evita que o warning vire folklore tecnico.

100 CAPÍTULO 23. OSTRICH SYNDROME SKILL

Capítulo 24

Nonsense Flag Nonsense
Naming

O Nonsense Flag Nonsense Naming transforma nomeacao em criptografia artesanal.
Variaveis nao explicam intencao; elas insinuam, confundem e exigemmediunidade de quem
le.

teste1, temp2, a, b, x
jaTrocouDeAba, botaoClicado, foiAtualizado, passouPorAqui
numeroMagico, naoAchou, temErro
anterior5, atual5, anteriorDoAnterior5

Esse padrao costuma vir acompanhado de flags booleans caoticas (isOk, isReady2, pode-
Talvez), criando fluxo de decisao que parece enquete de rede social.

24.1 Efeito semantico

Nome ruim nao e so “feio”. Ele altera custo cognitivo:

• leitura fica lenta
• regra de negocio vira adivinhacao
• review perde profundidade
• bug de entendimento aumenta

Quando o codigo exige reuniao para explicar cada variavel, a manutencao ja quebrou.

101

102 CAPÍTULO 24. NONSENSE FLAG NONSENSE NAMING

24.2 Exemplo didatico

24.2.1 Versao POG

if (a && !b && x > 0) {
faz1();

} else if (a && b && x == 0) {
faz2();

}

24.2.2 Versao legivel

boolean clienteElegivel = cliente.estaAtivo();
boolean pedidoJaFaturado = pedido.isFaturado();
int quantidadeItens = pedido.getItens().size();

if (clienteElegivel && !pedidoJaFaturado && quantidadeItens > 0) {
gerarFatura();

} else if (clienteElegivel && pedidoJaFaturado && quantidadeItens == 0) {
registrarInconsistencia();

}

A logica pode ser a mesma. A diferenca e que agora o leitor entende o dominio sem abrir
12 arquivos.

24.3 Por que o time cai nisso

• codigo escrito sob estresse
• falta de padrao de nomeacao
• medo de “nome grande”
• copia de variavel antiga para novo contexto

E comum em legado com baixa cobertura de teste: ninguem renomeia por receio de quebrar
algo invisivel.

24.4 Nonsense Flag: o primo perigoso

Flags sem semantica clara criam combinacoes explosivas.

if (isOk && !isReady && podeAtualizar && modo2) {
// o que exatamente isso significa?

}

24.5. ABORDAGEM PRAGMATICA 103

Cada booleano adicional dobra os estados possiveis. Sem modelagem explicita, o fluxo fica
impossivel de validar mentalmente.

24.5 Abordagem pragmatica

1. renomear primeiro as variaveis de maior impacto
2. extrair condicoes para metodos com nome de negocio
3. substituir multiplos booleans por enum/objeto de estado
4. registrar convencoes simples de nomeacao no time

Pequenas mudancas de semantica trazem ganho real sem refatoracao monstruosa.

24.6 Resumo POG

Nonsense Naming e Nonsense Flag dao sensacao de velocidade na digitacao e cobram
pedagio eterno na leitura. O sistema roda, mas o entendimento nao escala.

Na tradicao POGristica: se nem voce entende o nome da variavel depois de uma semana,
o ritual foi concluido com excelencia duvidosa.

24.7 Mini checklist de mitigacao

Renomeacao progressiva de variavel e melhoria de baixo risco e alto retorno. Cada nome
claro reduz duvida em review, onboarding e debug. Sem semantica compartilhada, a equipe
conversa sobre sintaxe e nunca sobre dominio.

104 CAPÍTULO 24. NONSENSE FLAG NONSENSE NAMING

Capítulo 25

Commented Code
Implementation Comments
Forever

OCommented Code Implementation e o padrao em que codigomorto, codigo desativado
e blocos de experimento ficam comentados para sempre no arquivo “por seguranca”.

A narrativa e conhecida: “nao apaga, vai que precisa depois”.

25.1 Exemplo classico

public void calcular() {
// antiga regra de desconto
// if (cliente.isPremium()) {
// total = total.multiply(new BigDecimal("0.8"));
// }

// nova regra (temporaria desde 2019)
if (cliente.isPremium()) {

total = total.multiply(new BigDecimal("0.85"));
}

}

O comentario vira arquivo historico embutido no fonte. O problema e que historico verda-
deiro ja existe: chama-se Git.

105

106 CAPÍTULO 25. COMMENTED CODE IMPLEMENTATION COMMENTS FOREVER

25.2 Problemas que esse padrao cria

• arquivo cresce com ruido sem valor executavel
• leitor nao sabe qual regra vale de fato
• revisao fica lenta, porque ha muito texto irrelevante
• chance de “descomentar” trechos obsoletos por engano

Comentario deveria explicar decisao. Nao substituir versionamento.

25.3 Quando isso comeca

• hotfix de madrugada com medo de perda
• ausencia de confianca em rollback
• equipe sem disciplina de branch/commit claro
• heranca de codigo antigo onde “apagar” e visto como risco

Em contexto de baixa previsibilidade, comentar parece seguro. Na pratica, so adia decisao
tecnica.

25.4 Exemplo didatico de alternativa

25.4.1 Versao POG

// TODO remover depois
// chamadaServicoAntigo();
chamadaServicoNovo();

// if (featureX) {
// fluxoVelho();
// }

25.4.2 Versao controlada

if (featureFlags.usarFluxoNovo()) {
chamadaServicoNovo();

} else {
chamadaServicoAntigo();

}

Com feature flag, o comportamento fica explicito e rastreavel. Quandomigrar tudo, remove-
se o fluxo antigo com commit unico e mensagem clara.

25.5. COMENTARIO BOM X COMENTARIO RUIM 107

25.5 Comentario bom x comentario ruim

Comentario bom:

• registra contexto de negocio ou decisao arquitetural
• explica “por que” algo existe
• aponta ticket/issue quando ha debito tecnico assumido

Comentario ruim:

• replica o que o codigo ja diz
• guarda codigo morto
• serve de escudo para incerteza eterna

25.6 Estrategia pragmatica de limpeza

1. remover blocos comentados sem uso comprovado
2. migrar excecoes para tickets rastreaveis
3. usar feature flag para transicao real
4. adotar regra de review: codigo comentado executavel nao entra

Isso reduz ruido sem interromper entrega.

25.7 Resumo POG

Commented Code Forever e um museu de decisao incompleta. Parece prudente, mas de-
grada legibilidade e aumenta risco operacional.

Emmodo POGramador: e guardar peças de carro velho na sala para “eventual necessidade”
e chamar isso de estrategia de manutencao preventiva.

25.8 Mini checklist de mitigacao

Codigo morto deve sair do arquivo e ficar no historico do Git. Comentario bom explica
decisao; comentario ruim armazenamedo. Se o trecho precisa existir por transicao, feature
flag com prazo e opcao mais segura.

108 CAPÍTULO 25. COMMENTED CODE IMPLEMENTATION COMMENTS FOREVER

Capítulo 26

Reinvented Square Wheel
Helper

O Reinvented Square Wheel Helper e o padrao de reimplementar manualmente algo
que a linguagem, framework ou biblioteca ja fornece com qualidade melhor.

A motivacao costuma ser nobre: “quero controle total”. O resultado, quase sempre, e uma
roda quadrada de manutencao pesada.

26.1 Exemplo classico

if (number.equals("1")) {
return 1;

} else if (number.equals("2")) {
return 2;

} else if (number.equals("3")) {
return 3;

} else if (number.equals("4")) {
return 4;

} else if (number.equals("5")) {
return 5;

} // ... ate o infinito

Aqui, algo que poderia ser Integer.parseInt(number) vira cascata manual sujeita a erro,
inconsistencia e custo de manutencao absurdo.

26.2 Sintomas do padrao

• helpers enormes para funcao basica

109

110 CAPÍTULO 26. REINVENTED SQUARE WHEEL HELPER

• “framework interno” para resolver problema trivial
• implementacoes caseiras sem teste robusto
• divergencia entre comportamento esperado e padrao de mercado

Quando o time escreve parser de data na mao em projeto Java moderno, a roda quadrada
ja esta em producao.

26.3 Por que isso acontece

• desconhecimento de recurso nativo
• trauma com biblioteca antiga
• desconfiança de dependencia externa
• ego tecnico (“eu faco melhor”)

Nem sempre e vaidade. Muitas vezes e falta de repertorio compartilhado no time.

26.4 Exemplo didatico

26.4.1 Versao POG

public boolean isEmailValido(String email) {
if (email == null) return false;
if (!email.contains("@")) return false;
if (!email.contains(".")) return false;
if (email.startsWith("@")) return false;
// dezenas de regras incompletas...
return true;

}

26.4.2 Versao mais segura

public boolean isEmailValido(String email) {
if (email == null) return false;
return javax.mail.internet.InternetAddress

.parse(email, true)

.length == 1;
}

Voce delega para implementacao madura, reduz bug e foca na regra de negocio real.

26.5 Custo oculto

• aumento de superficie de bug

26.6. CORRECAO PRAGMATICA 111

• onboarding lento (aprender ferramentas internas desnecessarias)
• dificuldade de evolucao (cada helper caseiro vira dependente de contexto)
• retrabalho em manutencao corretiva

Em resumo: mais codigo para manter sem ganho proporcional de valor.

26.6 Correcao pragmatica

1. identificar helpers caseiros de alto risco
2. comparar com API nativa equivalente
3. migrar gradualmente com testes de comportamento
4. documentar quando realmente precisar de implementacao propria

Se houver requisito especifico legitimo, mantenha customizacao minima e justificada.

26.7 Resumo POG

Reinvented Square Wheel Helper e o orgulho de construir do zero o que ja existe pronto.
Da sensacao de autoria e traz manutencao vitalicia.

No vocabulário POGristico: e trocar elevador por escada rolante movida a manivela para
provar independencia tecnologica.

26.8 Mini checklist de mitigacao

Antes de criar helper caseiro, responda: existe API nativa madura para isso? Se existir,
o onus da prova e de quem quer reinventar. Em geral, software de negocio ganha mais
quando reutiliza base estavel.

112 CAPÍTULO 26. REINVENTED SQUARE WHEEL HELPER

Capítulo 27

You Shall Not Pass

O You Shall Not Pass é o padrão de captura total: tudo é envolvido por try/catch amplo,
normalmente com Exception ou Throwable, para garantir que nada “escape”.

A intenção parece nobre: proteger o sistema. O efeito real costuma ser o oposto: esconder
causa raiz, diluir contexto e dificultar manutenção.

27.1 Sintoma clássico

public String processar(String entrada) {
try {

return servicoA.executar(entrada);
} catch (Throwable t) {

return "Falha ao processar";
}

}

Nesse modelo, falhas completamente diferentes viram a mesma resposta:

• erro de validação
• timeout de rede
• bug de programação
• erro de banco
• bug de serialização

Tudo cai no mesmo balaio sem rastreabilidade adequada.

27.2 Por que isso é perigoso

Capturar Throwable é especialmente arriscado porque inclui Error (ex.: OutOfMemoryError),
que em geral não deveria ser “tratado” como fluxo comum da aplicação.

113

114 CAPÍTULO 27. YOU SHALL NOT PASS

Quando o código captura amplo demais:

• o sistema parece estável, mas está cego
• logs úteis somem
• retries automáticos podem repetir operações perigosas
• estado inconsistente pode continuar rodando sem alerta

É o equivalente operacional de desligar o alarme de incêndio porque ele faz barulho.

27.3 Exemplo didático (controle de granularidade)

27.3.1 Versão POG

public Resultado gerarRelatorio(Filtro filtro) {
try {

validar(filtro);
Dados dados = repositorio.buscar(filtro);
byte[] pdf = renderizador.gerarPdf(dados);
return Resultado.ok(pdf);

} catch (Exception e) {
return Resultado.erro("Não foi possível gerar relatório");

}
}

27.3.2 Versão com tratamento útil

public Resultado gerarRelatorio(Filtro filtro) {
try {

validar(filtro);
} catch (ValidacaoException e) {

return Resultado.erro("Filtro inválido: " + e.getMessage());
}

Dados dados;
try {

dados = repositorio.buscar(filtro);
} catch (DataAccessException e) {

logger.error("Falha no banco ao buscar relatório", e);
return Resultado.erro("Falha temporária ao consultar dados");

}

try {
byte[] pdf = renderizador.gerarPdf(dados);

27.4. QUANDO USAR CAPTURA AMPLA, ENTÃO? 115

return Resultado.ok(pdf);
} catch (RenderizacaoException e) {

logger.error("Falha ao renderizar PDF", e);
return Resultado.erro("Não foi possível gerar o arquivo PDF");

}
}

Aqui cada tipo de problema recebe:

• tratamento adequado
• mensagem correta
• log contextualizado

27.4 Quando usar captura ampla, então?

Existe um uso legítimo: fronteiras globais de aplicação (filtro HTTP, middleware, handler
global), para evitar queda abrupta e registrar erro inesperado.

Mesmo nesses casos:

• capture para registrar e encerrar com segurança
• não converta tudo em “deu ruim” sem contexto
• não continue fluxo normal após falha crítica

27.5 Estratégia de correção gradual

Se seu legado está dominado por catch genérico:

1. mapeie os pontos com maior volume de erro
2. substitua captura genérica por exceções específicas
3. adicione logs com contexto de negócio (id, operação, usuário)
4. padronize respostas por categoria de erro
5. mantenha fallback global para o que for realmente inesperado

Essa abordagem reduz risco sem parar o trem.

27.6 Resumo POG

You Shall Not Pass nasce da boa intenção de blindar o sistema, mas frequentemente vira
blindagem contra diagnóstico. O código até “não quebra” na frente do usuário, porém
quebra a capacidade do time de entender e corrigir problemas.

No fim, erro que não aparece não desaparece. Ele só muda de lugar: sai da tela e vai morar
no backlog eterno da sustentação.

116 CAPÍTULO 27. YOU SHALL NOT PASS

Capítulo 28

Perfectness Execution
Bulletproof

O Bulletproof é o padrão em que toda operação, independentemente do que aconteça,
termina com mensagem de sucesso. Deu certo? Sucesso. Deu errado? Sucesso também.
Explodiu? Sucesso com fé.

try {
if (alterar(valor1, valor2)) {

return new Mensagem("Operação concluída com sucesso!");
} else {

return new Mensagem("Operação concluída com sucesso!");
}

} catch (Throwable e) {
return new Mensagem("Operação concluída com sucesso!");

}

Na superfície, parece experiência positiva para o usuário. No fundo, é supressão sistemá-
tica da realidade.

28.1 Como esse padrão se instala

Ele costuma surgir quando o time sofre pressão por indicadores simplistas, tipo:

• “não pode aparecer erro para o usuário”
• “precisamos reduzir chamados”
• “a tela sempre deve retornar ok”

Em vez de melhorar validação, observabilidade e tratamento adequado, adota-se o atalho:
uniformizar resposta de sucesso. O bug deixa de ser visível, mas continua existindo.

117

118 CAPÍTULO 28. PERFECTNESS EXECUTION BULLETPROOF

28.2 Exemplo didático (problema real disfarçado)

Imagine um endpoint de atualização cadastral:

public Mensagem atualizarEmail(Long usuarioId, String novoEmail) {
try {

Usuario usuario = usuarioRepository.findById(usuarioId).orElse(null);

if (usuario == null) {
return new Mensagem("Operação concluída com sucesso!");

}

usuario.setEmail(novoEmail);
usuarioRepository.save(usuario);

// Se save falhar por constraint, cai no catch e também retorna sucesso.
return new Mensagem("Operação concluída com sucesso!");

} catch (Exception e) {
return new Mensagem("Operação concluída com sucesso!");

}
}

O usuário recebe sucesso mesmo quando:

• ID não existe
• e-mail é inválido
• banco está indisponível
• transação foi revertida

Isso sabota o ciclo de feedback da aplicação.

28.3 Efeito colateral em cadeia

O Bulletproof cria danos silenciosos:

• suporte não consegue reproduzir erro porque “o sistema diz que deu certo”
• monitoramento perde sinal útil
• inconsistência de dados cresce sem alarme
• times consumidores da API tomam decisões erradas com base em falso positivo

É o equivalente a arrancar a luz do painel do carro para “resolver” o aviso do óleo.

28.4 Versão didática melhor (sem perder UX)

Você pode ser amigável com usuário sem mentir para ele:

28.5. QUANDO O BULLETPROOF JÁ ESTÁ EM PRODUÇÃO 119

public ResultadoAtualizacao atualizarEmail(Long usuarioId, String novoEmail) {
if (novoEmail == null || !novoEmail.contains("@")) {

return ResultadoAtualizacao.falha("E-mail inválido");
}

Usuario usuario = usuarioRepository.findById(usuarioId).orElse(null);
if (usuario == null) {

return ResultadoAtualizacao.falha("Usuário não encontrado");
}

try {
usuario.setEmail(novoEmail);
usuarioRepository.save(usuario);
return ResultadoAtualizacao.sucesso("E-mail atualizado com sucesso");

} catch (DataAccessException e) {
// Log técnico detalhado para equipe
logger.error("Falha ao atualizar e-mail do usuário {}", usuarioId, e);
// Mensagem amigável para usuário
return ResultadoAtualizacao.falha("Não foi possível concluir agora. Tente novamente.");

}
}

Aqui você tem:

• resultado honesto
• mensagem compreensível
• log técnico para diagnóstico
• separação entre erro de negócio e erro de infraestrutura

28.5 Quando o Bulletproof já está em produção

Não precisa reescrever tudo de uma vez. Estratégia incremental:

1. mapear endpoints com maior taxa de chamado
2. trocar retorno único por contrato de sucesso/falha
3. manter compatibilidade externa temporária
4. instrumentar logs e métricas antes de mudar comportamento de UI
5. remover catch genérico com retorno otimista

28.6 Resumo POG

Bulletproof é a prova de bala mais famosa da POG: não impede o tiro, só apaga o buraco
da parede no relatório. Ele melhora aparência de curto prazo e destrói confiança sistêmica

120 CAPÍTULO 28. PERFECTNESS EXECUTION BULLETPROOF

no longo prazo.

Sistema confiável não é o que “sempre responde sucesso”. É o que responde a verdade,
com contexto e previsibilidade. O restante é maquiagem operacional com prazo de validade
curto.

Capítulo 29

Exception Success

O Exception Success é o padrão em que a exceção deixa de representar situação excepci-
onal e passa a ser usada como fluxo normal da aplicação. Em vez de retornar um resultado,
o código “comunica” sucesso, validação, autorização e até regra de negócio por throw.

Na teoria, exceção deveria sinalizar algo fora do caminho esperado. Na prática POG, ela
vira API oficial da casa.

public static void somar(int a, int b) {
System.out.println(a + b);
// POG clássica: sucesso tratado como "erro"
throw new RuntimeException("Operação realizada com sucesso!");

}

29.1 Como reconhecer esse padrão

Você provavelmente está diante de um Exception Success quando vê este combo:

• métodos “felizes” que sempre terminam com throw
• catch (Exception e) decidindo regra de negócio
• mensagem de usuário final embutida em exception técnica
• sistema que “funciona” só porque alguém conhece a ordem dos catch

Outro sinal típico é a classe de serviço com assinatura sem retorno útil, e toda decisão
sendo tomada no controlador por blocos de captura.

29.2 Exemplo didático (versão POG)

public void processarPagamento(Pagamento pagamento) throws Exception {
if (pagamento == null) {

throw new Exception("Pagamento inválido");

121

122 CAPÍTULO 29. EXCEPTION SUCCESS

}

if (pagamento.getValor() <= 0) {
throw new Exception("Valor deve ser maior que zero");

}

gateway.cobrar(pagamento);

// "Sucesso" sinalizado por exceção para cair no catch correto
throw new Exception("PAGAMENTO_OK");

}

public String concluir(Pagamento pagamento) {
try {

processarPagamento(pagamento);
return "Fluxo inesperado"; // nunca chega aqui

} catch (Exception e) {
if ("PAGAMENTO_OK".equals(e.getMessage())) {

return "Pagamento concluído";
}
return "Falha: " + e.getMessage();

}
}

Esse código parece “esperto” no curto prazo, porque centraliza tudo no catch. O problema
é que mistura semânticas diferentes no mesmo canal:

• erro de infraestrutura
• erro de validação
• estado de sucesso

Quando tudo vira exceção, nada mais é exceção.

29.3 Por que isso aparece em projeto real

Esse padrão nasce por combinação de pressa, legado e falta de contrato claro entre cama-
das. É comum em contexto onde o time precisa “fazer entrar em produção hoje” e adota
soluções improvisadas:

• não havia tipo de retorno definido
• o sistema já tinha muito try/catch espalhado
• cada dev adicionou mais um throw para não quebrar fluxo antigo

Também aparece como versão digital do cargo cult programming: alguém viu que um throw

29.4. IMPACTOS TÉCNICOS 123

resolveu um bug específico, copiou a técnica, e passou a reproduzir o ritual sem entender
o efeito colateral.

29.4 Impactos técnicos

Os danos costumam ser progressivos:

• observabilidade piora, porque logs ficam poluídos com “erros” que não são erros
• monitoramento dispara alerta falso
• leitura do código fica ambígua
• testes ficam frágeis, pois dependem de mensagens textuais
• qualquer internacionalização quebra regra de negócio baseada em e.getMessage()

Em sistemas Java, isso ainda conflita com a intenção da própria linguagem e bibliotecas,
que tratam exceções como mecanismo de anomalia de execução, não como retorno padrão.

29.5 Exemplo didático (versão menos caótica)

public final class ResultadoPagamento {
private final boolean sucesso;
private final String mensagem;

private ResultadoPagamento(boolean sucesso, String mensagem) {
this.sucesso = sucesso;
this.mensagem = mensagem;

}

public static ResultadoPagamento ok(String mensagem) {
return new ResultadoPagamento(true, mensagem);

}

public static ResultadoPagamento falha(String mensagem) {
return new ResultadoPagamento(false, mensagem);

}

public boolean isSucesso() { return sucesso; }
public String getMensagem() { return mensagem; }

}

public ResultadoPagamento processarPagamento(Pagamento pagamento) {
if (pagamento == null) {

return ResultadoPagamento.falha("Pagamento inválido");

124 CAPÍTULO 29. EXCEPTION SUCCESS

}

if (pagamento.getValor() <= 0) {
return ResultadoPagamento.falha("Valor deve ser maior que zero");

}

try {
gateway.cobrar(pagamento);
return ResultadoPagamento.ok("Pagamento concluído");

} catch (GatewayIndisponivelException e) {
// aqui sim: exceção realmente excepcional
return ResultadoPagamento.falha("Gateway indisponível");

}
}

Perceba a diferença didática:

• fluxo de negócio usa retorno explícito
• exceção fica para falha inesperada/infraestrutura
• contrato fica legível para quem mantém depois

29.6 Resumo POG

Exception Success é sedutor porque parece reduzir código no início. Só que ele troca
clareza por truque, e truque em software envelhece mal. Em termos gambiarrísticos, é
uma técnica de “entrega imediata com juros compostos”.

Se ainda existir Exception Success no seu sistema, não precisa derrubar tudo. Comece iso-
lando os pontos críticos e separando, pouco a pouco, resultado de negócio de condição
excepcional. Assim você preserva produção e reduz o caos sem ferir o GLS.

Capítulo 30

String Sushiman

No String Sushiman, parametros estruturados sao compactados em uma string “lingui-
cao” com delimitadores magicos. Depois, o codigo faz split em camadas e torce para cada
posicao vir no formato correto.

30.1 Exemplo classico

public Tabela montaTabela(String linguicao) {

String[] colunas = linguicao.split("\\|");

for (String coluna : colunas) {
String[] campos = coluna.split(",");
// POGuices com os valores

}
}

Parece rapido para enviar dados sem criar contrato formal. O custo vem depois: qualquer
virgula fora do lugar quebra o parsing inteiro.

30.2 Sinais de maturidade Sushiman

• metodo com um unico String recebendo tudo
• documento externo explicando “ordem dos campos” em texto livre
• erros de parse intermitentes conforme dados reais
• codigo cheio de split, trim, substring e try/catch

Quando a validacao e “se nao explodiu, ta valido”, o padrao esta em pleno vigor.

125

126 CAPÍTULO 30. STRING SUSHIMAN

30.3 Por que aparece

• pressa para integrar sistemas heterogeneos
• aversao a criar DTO/JSON/XML formal
• legado com protocolo artesanal
• tentativa de economizar mudancas de assinatura

No curtissimo prazo, pode destravar entrega. No medio, vira debito tecnico dificil de audi-
tar.

30.4 Exemplo didatico

30.4.1 Versao POG

String payload = "nome=Ana,idade=29,ativo=true|nome=Joao,idade=31,ativo=false";

Se um nome vier com virgula ("Ana, Maria"), tudo quebra.

30.4.2 Versao com contrato simples

public record UsuarioDTO(String nome, int idade, boolean ativo) {}

List<UsuarioDTO> usuarios = List.of(
new UsuarioDTO("Ana", 29, true),
new UsuarioDTO("Joao", 31, false)

);

Ou, se fronteira exigir texto, use formato estruturado (JSON/CSV formal) com parser ro-
busto e esquema validado.

30.5 Impacto operacional

• bugs de integracao de dificil reproducao
• acoplamento forte ao “formato secreto”
• evolucao dolorosa (adicionar campo quebra consumidores antigos)
• testes extensos so para validar parsing

30.6 Mitigacao pragmatica

1. mapear strings-protocolo mais criticas
2. criar parser dedicado com validacao clara
3. converter cedo para objeto tipado
4. planejar migracao para contrato explicito

30.7. RESUMO POG 127

Mesmo sem reescrever tudo, so de isolar parsing em um ponto voce reduz caos.

30.7 Resumo POG

String Sushiman e arte de empilhar informacao heterogenea em texto linear e chamar
isso de protocolo. Funciona enquanto todos decoram a ordem. Quando alguem esquece,
estoura em producao.

No idioma POGramador: e servir feijoada em rolinho de sushi. Alimenta, mas cada mordida
e um evento imprevisivel.

30.8 Mini checklist de mitigacao

Antes de aceitar uma linguica de string em producao, valide tres pontos: formato versio-
nado, parser unico e erro com mensagem clara. Sem isso, cada consumidor interpreta o
payload de um jeito e a integracao vira loteria. Em ambiente serio, protocolo textual sem
contrato formal e convite para incidente recorrente.

128 CAPÍTULO 30. STRING SUSHIMAN

Capítulo 31

Sleeper Human Factor

O Sleeper Human Factor aplica atraso artificial para simular processamento, sincronizar
corridas acidentais ou “melhorar percepcao” do usuario. O instrumento ritual e sleep.

public class MedidorDePOGresso implements Runnable {
public void run() {

while (true) {
// Realiza um processamento rapido aqui...
try {

// ... atrasa propositalmente aqui
Thread.sleep(1000);

} catch (InterruptedException exc) {
}
progress.setValue(blablabla.getPorcentagem());

}
}

}

No curto prazo, parece resolver sintomas. No longo, vira latencia institucionalizada.

31.1 Onde esse padrao aparece

• interface piscando rapido demais e alguem “acalma” com delay
• integracao eventual falhando e o time adiciona espera fixa
• teste instavel ficando “verde” com sleep(2000)
• fila/concorrencia sem sincronizacao correta

Quando o sistema depende de dormir para funcionar, o design acordou errado.

129

130 CAPÍTULO 31. SLEEPER HUMAN FACTOR

31.2 Motivos reais para adocao

• corrida de thread dificil de reproduzir
• deadline apertado com bug intermitente
• falta de mecanismo de sincronizacao/evento
• cultura de “se resolveu, nao mexe”

O Human Factor nao e burrice; e resposta emergencial. O problema e deixar permanente.

31.3 Exemplo didatico

31.3.1 Versao POG

public void enviarNotificacao(Pedido pedido) {
salvar(pedido);
try {

Thread.sleep(3000); // espera "banco refletir"
} catch (InterruptedException e) {
}
mensageria.publicar(pedido.getId());

}

31.3.2 Versao com sincronizacao explicita

public void enviarNotificacao(Pedido pedido) {
Pedido salvo = repositorio.salvar(pedido);
// publica quando ha id persistido, sem espera arbitraria
mensageria.publicar(salvo.getId());

}

Se precisar de consistencia assincrona, use evento transacional, fila confirmada ou meca-
nismo de retry com backoff controlado. Nao tempo fixo magico.

31.4 Impacto tecnico

• tempo de resposta pior sem ganho funcional
• throughput reduzido sob carga
• comportamento imprevisivel conforme ambiente
• testes lentos e flakey

Delay fixo pode passar na maquina do dev e falhar em producao, ou vice-versa.

31.5. COMO REMOVER COM BAIXO RISCO 131

31.5 Como remover com baixo risco

1. localizar sleeps fora de UI de animacao intencional
2. classificar por finalidade (sincronizacao, UX, workaround)
3. substituir por evento, callback, lock ou polling robusto com timeout
4. medir antes/depois com metrica de latencia

31.6 Sobre UX real

Nem todo atraso e pecado. Em UX, feedback visual minimo pode ser util para comunicar
estado. A diferenca e intencao e local:

• atraso visual controlado na camada de interface: ok
• atraso tecnico para esconder bug de fluxo: risco alto

31.7 Resumo POG

Sleeper Human Factor e anestesia operacional. O paciente para de reclamar por alguns
segundos, mas a causa da dor permanece.

No catecismo POGristico: se o bug corre demais, deita ele no sleep e chama de experiencia
humana otimizada.

132 CAPÍTULO 31. SLEEPER HUMAN FACTOR

Capítulo 32

Black Cat In A Dark Room

O Black Cat In A Dark Room é o padrão em que um método recebe um Map genérico (ou
estrutura equivalente) com tudo dentro: parâmetros de entrada, flags de comportamento,
contexto técnico e, às vezes, traumas da sprint passada.

É como procurar um gato preto num quarto escuro: você sabe que algo está lá, mas não
sabe onde, nem em qual tipo.

32.1 Anatomia da gambiarra

A ideia inicial parece elegante: “em vez de 12 parâmetros, passo um Map só”. O problema
é que esse ganho de assinatura vira perda de contrato.

public Object processar(Map<String, Object> params) {
String operacao = (String) params.get("op");
Long clienteId = Long.valueOf(params.get("id").toString());
Boolean urgente = Boolean.valueOf(params.get("urgente").toString());

// Se alguém enviou "true" como "S" já era.
// Se "id" vier nulo, explode aqui.
// Se a chave vier como "clienteId" em outro ponto, não funciona.

return servico.executar(operacao, clienteId, urgente);
}

O compilador para de ajudar cedo. E a validação passa a ser uma colcha de retalhos em
runtime.

133

134 CAPÍTULO 32. BLACK CAT IN A DARK ROOM

32.2 Cheiro técnico associado

Esse padrão conversa diretamente com smells conhecidos:

• Long Parameter List disfarçado
• Primitive Obsession (muito dado cru, pouca modelagem)
• Data Clumps (os mesmos campos reaparecendo juntos em vários lugares)

Na prática, você troca uma assinatura verbosa por acoplamento implícito: todo mundo
precisa “saber de cabeça” os nomes mágicos das chaves.

32.3 Exemplo didático de evolução

32.3.1 Versão POG

public void criarBoleto(Map<String, Object> map) {
String nome = (String) map.get("nome");
String documento = (String) map.get("doc");
BigDecimal valor = new BigDecimal(map.get("valor").toString());
String vencimento = (String) map.get("dataVenc");

// várias conversões, vários riscos silenciosos
}

32.3.2 Versão com contrato explícito

public record CriarBoletoRequest(
String nome,
String documento,
BigDecimal valor,
LocalDate dataVencimento

) {}

public void criarBoleto(CriarBoletoRequest req) {
// Aqui o compilador ajuda
// e o contrato fica autoexplicativo

}

Benefícios imediatos:

• tipagem forte
• documentação natural na assinatura
• erro detectado antes da produção
• teste mais simples e legível

32.4. POR QUE TIMES CONTINUAM USANDO MAP GENÉRICO 135

32.4 Por que times continuam usando Map genérico

Motivos reais, e não caricatos:

• integração com payload dinâmico/legado
• tentativa de evitar mudanças em cadeia
• medo de criar classes “demais”
• pressão de prazo

Ou seja: o padrão não nasce de burrice, nasce de contexto ruim. O problema é quando ele
vira decisão padrão para tudo.

32.5 Como usar sem virar caos

Se precisar usar Map por fronteira técnica (por exemplo, parser de payload desconhecido),
faça contenção:

1. converta para objeto tipado o mais cedo possível
2. valide presença e tipo das chaves logo na entrada
3. nunca propague Map cru pela regra de negócio
4. centralize mapeamento em um único ponto

Assim você transforma o quarto escuro em corredor iluminado.

32.6 Resumo POG

Black Cat In A Dark Room é irresistível no dia de entrega porque parece flexível. Só que
flexibilidade sem contrato cobra caro na manutenção.

Em linguagem POGráfica: é uma mochila sem divisória. Cabe tudo. Você só não acha nada
quando precisa, principalmente em produção às 17h58 de sexta-feira.

136 CAPÍTULO 32. BLACK CAT IN A DARK ROOM

Capítulo 33

Mega Zord

O Mega Zord e o padrao da superfuncao: um metodo gigante que concentra multiplas
responsabilidades para “facilitar manutencao”. Em vez de modularizar, funde tudo em
uma unidade colossal.

No discurso: centralizacao. Na pratica: acoplamento total.

33.1 Caracteristicas classicas

• centenas ou milhares de linhas em um unico metodo
• muitos if, switch e variaveis de controle
• efeitos colaterais em banco, arquivo, API e tela no mesmo fluxo
• baixa cobertura de teste por medo de tocar no bloco

Quando um metodo exige mapa mental para ser lido, o Mega Zord ja atingiu forma com-
pleta.

33.2 Exemplo didatico (versao POG)

public Resultado processarTudo(Pedido pedido, Usuario usuario, Map<String, Object> cfg) {
// valida entrada
// calcula imposto
// aplica desconto
// grava banco
// envia email
// chama API externa
// gera log
// atualiza cache
// devolve resposta

137

138 CAPÍTULO 33. MEGA ZORD

// 800 linhas depois...
return resultado;

}

O problema nao e tamanho por si so. E mistura de motivos de mudanca. Uma regra fiscal
muda por motivo A. O email muda por motivo B. Estao presos no mesmo bloco.

33.3 Por que times criam Mega Zord

• evolucao incremental sem refatoracao
• pressa para encaixar regra nova em ponto “que ja funciona”
• baixa confianca em extrair componentes
• ausencia de ownership claro do modulo

A cada sprint, entra “so mais um if”. Em um ano, nasce a criatura.

33.4 Efeito colateral

• regressao frequente
• review superficial (arquivo grande desencoraja analise profunda)
• dependencia de “guardiao do modulo”
• onboarding lento

O sistema fica robusto para quem criou e hostil para o resto da equipe.

33.5 Exemplo de decomposicao minima

public Resultado processarTudo(Pedido pedido, Usuario usuario, Map<String, Object> cfg) {
validarEntrada(pedido, usuario);
Valores valores = calcularValores(pedido, cfg);
PersistenciaOut persistencia = persistirPedido(pedido, valores);
integrarServicosExternos(persistencia);
notificarPartes(persistencia);
return montarResultado(persistencia);

}

Ainda e um fluxo central, mas com fronteiras internas claras. Isso ja permite teste por
etapa e reduz risco de alteracao.

33.6 Estrategia pragmatica de reducao

1. mapear secoes logicas no metodo gigante
2. extrair uma secao por vez para metodo privado

33.7. RESUMO POG 139

3. adicionar testes de regressao antes/depois da extracao
4. mover etapas estaveis para classes dedicadas

Sem reescrita completa. Sem promessa de refatoracao epica.

33.7 Resumo POG

Mega Zord e poderoso para entrega imediata e aterrorizante para evolucao sustentavel.
Quanto mais cresce, mais caro fica tocar nele.

No sotaque POG: e juntar todos os fios do painel num unico disjuntor e comemorar que
“agora ta centralizado”.

140 CAPÍTULO 33. MEGA ZORD

Capítulo 34

THUNDER MEGA ZORD

O Thunder Mega Zord e a fusao entre duas potencias da gambiarra: metodo gigantesco
+ contrato opaco com Map de entrada e Object[] de saida. E a tempestade perfeita do
acoplamento.

/**
* Processa
*
* @param parametros
* @return
* @throws Throwable
*/

public static Object[] processar(Map parametros) throws Throwable {
// Aí é aquilo, mermão...
// ...
// ...
return processado;

}

A assinatura nao diz quase nada. So promete incerteza com confianca.

34.1 Como identificar

• Map sem tipo para entrada complexa
• Object[] com indices sem semantica
• throws amplo (Throwable/Exception) para tudo
• javadoc generico sem contrato util

Quando a documentacao diz “Processa” e o retorno e Object[], voce nao tem API: voce tem
adivinhacao.

141

142 CAPÍTULO 34. THUNDER MEGA ZORD

34.2 Exemplo didatico de risco

Object[] retorno = processar(params);
String status = (String) retorno[0];
BigDecimal total = (BigDecimal) retorno[1];
Date data = (Date) retorno[2];

Se alguem mudar a ordem interna para [total, status, data], o compilador nao reclama.
O bug aparece em runtime, geralmente em producao.

34.3 Por que esse padrao surge

• metodo legado cresceu sem contrato formal
• tentativa de evitar criacao de classes de entrada/saida
• integracao rapida entre equipes sem alinhamento de tipos
• “nao mexe na assinatura que quebra tudo”

Em ambientes de prazo extremo, e compreensivel. Em ambiente de manutencao continua,
e erosao programada.

34.4 Versao didatica mais segura

public record ProcessarRequest(Long clienteId, BigDecimal valor, boolean urgente) {}
public record ProcessarResponse(String status, BigDecimal total, LocalDate dataProcessamento) {}

public ProcessarResponse processar(ProcessarRequest req) {
// regra aqui
return new ProcessarResponse("OK", req.valor(), LocalDate.now());

}

Agora:

• contrato e autoexplicativo
• compilador ajuda
• mudanca de campo exige ajuste explicito
• teste fica legivel

34.5 Migracao incremental possivel

1. manter assinatura antiga como adaptador temporario
2. converter Map para request tipado internamente
3. devolver response tipado e mapear para Object[] apenas no adaptador
4. migrar consumidores gradualmente

34.6. RESUMO POG 143

Assim voce moderniza sem quebrar tudo de uma vez.

34.6 Resumo POG

Thunder Mega Zord entrega flexibilidade instantanea e debito estrutural de longo prazo.
Ele parece universal porque aceita tudo e devolve qualquer coisa.

No evangelho da TelePOG: se nao souber diagnosticar, reinicia. Se continuar ruim, culpa
a internet e abre outro chamado.

34.7 Mini checklist de mitigacao

Contrato opaco precisa de quarentena: converta entradas e saidas genericas em objetos
tipados na fronteira do metodo. Mesmo que internamente continue legado por um tempo,
essa adaptacao reduz risco imediato e prepara migracao segura dos consumidores.

144 CAPÍTULO 34. THUNDER MEGA ZORD

Capítulo 35

Controller Confusion

O Controller Confusion é a evolução natural do MVC cansado. No discurso, o projeto
ainda “usa camadas”. No código real, o controller virou templo monolítico: valida, trans-
forma, persiste, chama API externa, gera relatório e decide mensagem de tela.

É o padrão VCC: View/Controller Confusion. Em estágio avançado, vira CCC: Chaotic
Controller Confusion.

35.1 De onde isso vem

Esse padrão quase sempre nasce em projeto com uma mistura de:

• prazo curto com escopo longo
• time mudando frequentemente
• ausência de limites claros entre camadas
• cultura de “só mais esse if aqui no endpoint”

No início, parece uma economia. Você evita criar serviço, evita DTO, evita caso de uso. Só
que cada economia dessas vira dívida semântica.

Com o tempo, o controller acumula responsabilidades demais e vira equivalente ao anti-
pattern conhecido como God Object: uma entidade central que conhece tudo e acopla
tudo.

35.2 Exemplo didático (Controller Confusion clássico)

@PostMapping("/pedidos")
public ResponseEntity<?> criar(@RequestBody Map<String, Object> body) {

try {
// 1) Validação de entrada
if (body.get("clienteId") == null) {

145

146 CAPÍTULO 35. CONTROLLER CONFUSION

return ResponseEntity.badRequest().body("clienteId obrigatório");
}

// 2) Regra de negócio direto no controller
BigDecimal total = new BigDecimal(body.get("total").toString());
if (total.compareTo(BigDecimal.ZERO) <= 0) {

return ResponseEntity.badRequest().body("total inválido");
}

// 3) Persistência direto aqui
PedidoEntity pedido = new PedidoEntity();
pedido.setClienteId(Long.parseLong(body.get("clienteId").toString()));
pedido.setTotal(total);
pedidoRepository.save(pedido);

// 4) Integração externa também aqui
String token = authClient.login("usuario", "senha");
freteClient.calcular(token, pedido.getId(), pedido.getTotal());

// 5) Formatação de resposta
Map<String, Object> resp = new HashMap<>();
resp.put("id", pedido.getId());
resp.put("status", "CRIADO");
return ResponseEntity.ok(resp);

} catch (Exception e) {
// 6) Tratamento genérico sem contexto
return ResponseEntity.internalServerError().body("erro inesperado");

}
}

Repare na sobrecarga cognitiva. Um único método mistura várias preocupações que mu-
dam por motivos diferentes. Resultado: qualquer ajuste simples vira cirurgia de alto risco.

35.3 Sinais de que virou confusão

• controller com centenas ou milhares de linhas
• mesmo endpoint mexendo em banco, fila, arquivo e API externa
• testes de controller gigantes tentando cobrir regra de negócio
• bugs regressivos frequentes por efeitos colaterais não intencionais

Isso bate diretamente com smells clássicos de engenharia de software: long method, long
parameter list, divergent change e shotgun surgery.

35.4. VERSÃO DIDÁTICA COM SEPARAÇÃO MÍNIMA 147

35.4 Versão didática com separação mínima

@PostMapping("/pedidos")
public ResponseEntity<?> criar(@RequestBody CriarPedidoRequest req) {

try {
ResultadoCriacaoPedido resultado = criarPedidoUseCase.executar(req);
return ResponseEntity.status(201).body(resultado);

} catch (ValidacaoException e) {
return ResponseEntity.badRequest().body(e.getMessage());

} catch (IntegracaoException e) {
return ResponseEntity.status(502).body("Falha em integração externa");

}
}

public class CriarPedidoUseCase {
public ResultadoCriacaoPedido executar(CriarPedidoRequest req) {

// validação e regras aqui, de forma testável
// persistência via gateway/repositório
// integrações encapsuladas
// retorno explícito

}
}

Aqui o controller volta ao papel dele: orquestrar I/O HTTP e traduzir resultado para res-
posta. A regra deixa de ficar refém de framework web.

35.5 Como reduzir sem reescrever tudo

Abordagem pragmática, sprint por sprint:

1. escolha um endpoint crítico (o mais alterado)
2. extraia uma regra para um serviço/caso de uso
3. mantenha assinatura antiga para não quebrar cliente
4. adicione teste no caso de uso extraído
5. repita até o controller emagrecer

Isso evita refatoração épica e reduz risco operacional.

35.6 Resumo POG

Controller Confusion é confortável no curto prazo, cruel no médio e impagável no longo.
É o padrão ideal para gerar chamados em série e sustentar o emprego de meio time de
sustentação.

148 CAPÍTULO 35. CONTROLLER CONFUSION

Se a meta é continuar entregando sem criar um cemitério de endpoint, trate controller
como fronteira e não como depósito. Caso contrário, cedo ou tarde, o MVC vira apenas
uma lenda oral contada para estagiário.

Capítulo 36

No More Layers

No No More Layers, arquitetura em camadas e considerada burocracia. Tudo acontece
no mesmo lugar, normalmente na tela/controlador: validacao, regra de negocio, acesso a
dados e formatacao de resposta.

A promessa e velocidade. O custo e acoplamento total.

36.1 Exemplo classico

private void botaoSalvar_Click(Object sender, EventArgs e) {
// 1) le campos da tela
// 2) valida regra
// 3) monta SQL
// 4) executa no banco
// 5) monta mensagem de retorno
// 6) atualiza grid

}

Tudo numa unica rotina de interface. Parece eficiente enquanto o sistema e pequeno.
Quando cresce, cada alteracao de regra exige tocar na tela.

36.2 Consequencias praticas

• baixa reutilizacao de regra de negocio
• testes automatizados dificeis
• dependencia forte de framework de UI
• regressao em cascata a cada ajuste visual

Quando a troca de banco exige alterar formulario, a separacao de responsabilidades ja
morreu.

149

150 CAPÍTULO 36. NO MORE LAYERS

36.3 Onde esse padrao e comum

• legados desktop (Delphi, VB6, WinForms)
• sistemas web antigos com script + SQL inline
• projetos que cresceram sem desenho arquitetural
• times pressionados por entregas imediatas

Nao e um problema de tecnologia especifica. E um problema de limite de responsabilidade.

36.4 Exemplo didatico de separacao minima

// camada de interface
public Resultado salvarPedido(FormPedido form) {

CriarPedidoInput input = mapear(form);
return criarPedidoUseCase.executar(input);

}

// caso de uso
public Resultado executar(CriarPedidoInput input) {

validar(input);
Pedido pedido = Pedido.novo(input);
repositorio.salvar(pedido);
return Resultado.sucesso(pedido.getId());

}

Aqui a tela para de saber SQL e regra fiscal. Ela apenas traduz entrada/saida.

36.5 Correcao gradual

1. escolher um fluxo com muita manutencao
2. extrair regra para servico/caso de uso
3. manter UI como adaptador
4. repetir por partes sem reescrita global

Abordagem incremental reduz risco de parada total.

36.6 Beneficio real de manter camadas

• mudanca de regra sem mexer na tela
• possibilidade de reaproveitar fluxo em API/job
• testes de negocio sem subir interface
• codigo mais legivel para onboarding

36.7. RESUMO POG 151

Arquitetura em camadas nao e luxo academico. E estrategia para reduzir custo de mu-
danca.

36.7 Resumo POG

No More Layers e gostoso no curto prazo: menos arquivos, mais entrega rapida. No longo
prazo, transforma cada ajuste simples em operacao delicada.

Na linguagem POG: e cozinhar, atender cliente e lavar prato no mesmo fogao. Da para
fazer. Escalar e outra historia.

36.8 Mini checklist de mitigacao

Se a tela conhece SQL, regra fiscal e formato de resposta externa, a camada de interface
ja esta sobrecarregada. Comece separando apenas uma responsabilidade por sprint. Em
poucos ciclos, o ganho de teste e previsibilidade aparece sem precisar pausar o roadmap.

152 CAPÍTULO 36. NO MORE LAYERS

Capítulo 37

Db Is Our God

No Db Is Our God, o banco de dados deixa de ser camada de persistencia e vira centro do
universo: regra de negocio, orquestracao de fluxo, validacao, transformacao, geracao de
relatorio e ate HTML.

Tambem conhecido como In DB We Trust.

37.1 Dogmas do padrao

Tudo vai para o banco:

• dados e arquivos
• imagens e logs
• regra de negocio em procedure
• tratamento de erro em trigger
• composicao de resposta em SQL

A promessa e “centralizar para padronizar”. O risco e concentrar complexidade e gargalo
no mesmo ponto.

37.2 Exemplo didatico

CREATE PROCEDURE processar_pedido(
IN p_cliente_id BIGINT,
IN p_valor DECIMAL(10,2)

)
BEGIN

-- valida cliente
-- calcula imposto
-- grava pedido

153

154 CAPÍTULO 37. DB IS OUR GOD

-- atualiza estoque
-- chama funcao de notificacao
-- retorna mensagem formatada

END;

Procedure grande pode funcionar bem em cenario especifico. O problema surge quando
ela vira lugar padrao para toda regra, sem fronteira clara entre dominio e persistencia.

37.3 Sintomas de culto ao banco

• alteracao de regra exige deploy de script + janela de manutencao
• time de aplicacao nao entende mais o fluxo completo
• logica espalhada entre app e SQL sem contrato
• dificuldade de testar regra fora do ambiente de banco

Quando o dominio mora em trigger, a aplicacao vira um cliente passivo de eventos invisi-
veis.

37.4 Por que isso acontece

• historico forte de time DBA-centric
• performance local excelente em consultas complexas
• legado construido antes de camada de servico madura
• tentativa de garantir consistencia “na marra”

Existe valor real em banco: transacao, integridade referencial, constraints, consulta. O
excesso e que vira anti-pattern.

37.5 Exemplo de equilibrio pragmatico

• banco cuida de integridade e consulta eficiente
• aplicacao cuida de caso de uso e orquestracao
• procedures ficam para cenarios realmente justificados

public void criarPedido(CriarPedidoInput input) {
validarRegras(input); // regra de negocio
Pedido pedido = mapper.map(input);
repositorio.salvar(pedido); // persistencia

}

No banco:

ALTER TABLE pedido
ADD CONSTRAINT chk_valor_positivo CHECK (valor > 0);

37.6. ESTRATEGIA DE MIGRACAO 155

Cada camada cumpre seu papel.

37.6 Estrategia de migracao

1. mapear procedures criticas por dominio
2. separar validacoes de negocio das constraints de integridade
3. expor regras em camada de aplicacao com testes
4. manter no banco o que e estrutural e transacional

Sem guerra santa. Com criterio.

37.7 Resumo POG

Db Is Our God da sensacao de controle total, mas centraliza risco e reduz flexibilidade de
evolucao. Banco e essencial, mas nao precisa ser divindade onipotente do sistema.

No catecismo POGramador: quando tudo e milagre de procedure, qualquer manutencao
vira peregrinacao com janela de madrugada.

156 CAPÍTULO 37. DB IS OUR GOD

Capítulo 38

Snow White Returns

O Snow White Returns celebra multiplos pontos de retorno em funcoes gigantes. A ideia
original era simplificar casos locais. O uso extremo transforma fluxo em labirinto.

POrque um return claro quando voce pode ter sete, doze ou vinte e um?

38.1 Como o padrao se forma

• metodo cresce sem refatoracao
• cada condicao ganha um return de emergencia
• caminhos de saida se multiplicam sem estrategia
• leitura sequencial deixa de representar fluxo real

Em funcoes pequenas, early return pode melhorar legibilidade. Em funcoes enormes e sem
estrutura, vira desorientacao.

38.2 Exemplo didatico (caotico)

public Resultado processar(Pedido pedido) {
if (pedido == null) return Resultado.erro("pedido nulo");
if (pedido.getItens().isEmpty()) return Resultado.erro("sem itens");

if (!estoqueDisponivel(pedido)) return Resultado.erro("sem estoque");

if (pedido.isRetirada()) {
if (!validarLoja(pedido)) return Resultado.erro("loja invalida");
return Resultado.ok("retirada liberada");

}

157

158 CAPÍTULO 38. SNOW WHITE RETURNS

if (pedido.isEntrega()) {
if (!validarEndereco(pedido)) return Resultado.erro("endereco invalido");
if (pedido.getFrete() == null) return Resultado.erro("frete ausente");
return Resultado.ok("entrega liberada");

}

return Resultado.erro("tipo de entrega desconhecido");
}

Aqui ainda parece legivel porque e curto. Agora imagine isso com 700 linhas e efeitos
colaterais entre condicoes.

38.3 Risco principal

• ponto de saida demais dificulta rastrear estado
• logging e auditoria ficam inconsistentes
• manutencao adiciona novos retornos sem revisar os antigos
• mudanca de regra quebra caminhos esquecidos

No fim, o bug nao esta em um return especifico. Esta na falta de desenho do fluxo.

38.4 Versao mais organizada

public Resultado processar(Pedido pedido) {
validarEntrada(pedido);

if (pedido.isRetirada()) {
return processarRetirada(pedido);

}

if (pedido.isEntrega()) {
return processarEntrega(pedido);

}

return Resultado.erro("tipo de entrega desconhecido");
}

private Resultado processarRetirada(Pedido pedido) {
validarLojaRetirada(pedido);
return Resultado.ok("retirada liberada");

}

38.5. COMO CORRIGIR SEM GUERRA 159

private Resultado processarEntrega(Pedido pedido) {
validarDadosEntrega(pedido);
return Resultado.ok("entrega liberada");

}

Ainda existem retornos multiplos, mas cada funcao tem escopo pequeno e intencao clara.

38.5 Como corrigir sem guerra

1. medir funcoes com maior complexidade ciclomática
2. extrair blocos por responsabilidade
3. manter retornos apenas onde aumentam clareza
4. padronizar log de entrada/saida por fluxo

Nao e sobre proibir return cedo. E sobre evitar floresta de saidas emmetodo sem fronteira.

38.6 Resumo POG

SnowWhite Returns e divertido enquanto o autor lembra o caminho de cada saida. Quando
o contexto muda, vira castelo sem planta baixa.

No idioma POG: cada return extra e uma porta secreta. Bom para quem construiu. Terrivel
para quem herdou.

38.7 Mini checklist de mitigacao

Retornos multiplos so sao problema quando escondem complexidade acidental. Se cada
retorno estiver em funcao pequena e com intencao clara, tudo bem. O anti-pattern surge
quando os retornos viram atalho para evitar modelagem do fluxo principal.

160 CAPÍTULO 38. SNOW WHITE RETURNS

Capítulo 39

Conclusões

Chegamos ao fim deste tomo maldito. Se voce leu ate aqui, ha duas possibilidades:

1. voce realmente se interessa por engenharia de software
2. voce esta fugindo de uma task com prazo suicida

Nos dois casos, parabens. Voce demonstrou coragem.

39.1 O que este livro tentou mostrar

A Programacao Orientada a Gambiarra nao e apenas uma piada interna da area. Ela e um
fenomeno real, repetivel e sistemico.

POG nao nasce so de “dev ruim”. Ela nasce do encontro entre:

• pressao de prazo
• processo torto
• contexto incompleto
• incentivo desalinhado
• tomada de decisao sob estresse

Quando esses elementos se alinham, ate equipe boa produz artefardo.

39.2 As quatro grandes licoes

39.2.1 1. Gambiarra e inevitavel

Todo sistema vivo acumula improviso. Isso nao e falha moral. E caracteristica de software
em producao.

Negar essa realidade so piora a qualidade das decisoes.

161

162 CAPÍTULO 39. CONCLUSÕES

39.2.2 2. Nem toda POG e igual

Existe gambiarra tatica, conscientemente aplicada para conter incidente. Existe gambiarra
estrutural, reproduzida por meses sem plano de saida.

Confundir as duas e o caminho mais rapido para virar refem do proprio codigo.

39.2.3 3. Nomear padrao aumenta lucidez

Quando voce chama algo de Controller Confusion, Zipomatic Versioning ou Exception
Success, deixa de discutir no campo da opiniao e passa a discutir no campo da engenharia.

Nome reduz neblina.

39.2.4 4. Saida sempre e gradual

Projeto real nao aceita reforma espiritual instantanea. Quem promete “refatorar tudo” em
uma sprint esta vendendo fanfic.

A evolucao sustentavel vem de pequenos movimentos:

• mapear pontos criticos
• reduzir risco incrementalmente
• proteger fluxo de negocio
• melhorar sem parar entrega

39.3 O paradoxo do POGramador

Quanto mais experiente, menos inocente. Quanto mais conhecimento, menos dogma.
Quanto mais disciplina, menos heroicismo vazio.

O POGramadormaduro nao e o que nunca faz gambiarra. E o que sabe exatamente quando,
por que e ate quando vai conviver com ela.

39.4 Sobre culpa e responsabilidade

Se voce se reconheceu em varios capitulos, relaxe: todos nos ja passamos por isso.

A diferenca entre amador e profissional nao esta em nunca errar. Esta em:

• reconhecer o erro cedo
• assumir o impacto
• aprender com padrao recorrente
• nao terceirizar culpa para “o sistema”

Redirecao Tangencial diverte por cinco minutos. Responsabilidade tecnica sustenta car-
reira por decadas.

39.5. UM COMPROMISSO PARA LEVAR DAQUI 163

39.5 Um compromisso para levar daqui

Se este livro precisasse terminar com um pacto simples, seria este:

Continue entregando. Mas nunca entregue no automatico.

Pergunte sempre:

• qual problema estou resolvendo agora?
• qual problema estou criando para depois?
• quem vai pagar essa conta futura?

Essas tres perguntas, repetidas com honestidade, ja evitam metade das pogs catastroficas
que assombram times inteiros.

39.6 Encerramento

POG e uma arte dominada por muitos, confessada por poucos e negada por quase todos.

Que voce saia deste livro com mais repertorio, mais senso de realidade e menos ilusao de
pureza arquitetural.

E que Lady Murphy siga ao seu lado, nao como maldicao, mas como lembrete:

se algo pode dar errado, alguem vai dar deploy sexta-feira 18h.

POGae.

164 CAPÍTULO 39. CONCLUSÕES

Capítulo 40

Bibliografia Consolidada

Esta seção consolida todas as referências citadas ao longo do livro, organizadas por capí-
tulo.

40.1 O que é POG?

[^ref]

40.2 História da POG

[^ref]

165

166 CAPÍTULO 40. BIBLIOGRAFIA CONSOLIDADA

	Agradecimentos
	Introdução
	O que é POG?
	Sinônimos de Gambiarra
	Programação Orientada a Gambiarra
	Referências
	Notas

	História da POG
	O ser humano é uma máquina de reconhecer padrões
	Não basta reconhecer, tem que espalhar
	Não basta saber contar ovelhas
	Precisamos contar o tempo
	O calendário romano
	O calendário Juliano
	O calendário Gregoriano
	Chama o Ratinho
	Referências
	Notas

	Requisitos da POG
	As dimensões dos Requisitos da POG
	Notas

	Dimensão Humana
	Equipe Apática
	Profissionais Superestimados
	Arquiteto MacGyver
	Gerente Sem Noção
	Cliente Corrosivo
	Usuário Abrasivo
	Intrometido Inepto
	Dobrador de problemas
	Notas

	Dimensão Tecnológica
	Tecnologia Inadequada
	Desconhecimento Técnico
	Obsolescência Adquirida
	Rigidez Arquitetural
	Projeto Malamanhado
	Notas

	Dimensão Estrutural
	Dimensão Processual
	Como reduzir a Dimensão Processual sem matar a produtividade
	Encerramento processual

	Dimensão Temporal
	O próprio tempo
	Os quatro Fs
	Janela de caos combinada
	Como manter a POG sob controle (sem virar monge da engenharia)
	Encerramento temporal

	Príncípios da POG
	O conjunto canonico
	Como esses principios operam
	Principios, Tecnicas e Patterns
	O compromisso do POGramador

	Técnicas da POG
	O que e uma tecnica POG
	Do principio para o teclado
	O arsenal tecnico desta secao
	Niveis de maestria
	Como ler esta parte do livro
	Encerramento da abertura

	Zipomatic versioning
	Como funciona o ritual
	Exemplo do mundo real
	Sinais de que o Zipomatic dominou
	Por que a tecnica surge
	Exemplo didatico de diferenca
	Impacto tecnico e humano
	Como sair sem trauma
	Resumo POG

	Monkey Patching
	Como aparece em projeto real
	Exemplo didatico (JavaScript)
	Exemplo didatico (Python)
	Quando a tecnica pode ser aceitavel
	Sinais de abuso
	Mitigacao pragmatica
	Resumo POG

	Incremental patching debug
	Ritual de aplicacao
	Exemplo classico
	O que quase nunca entra nesse fluxo
	Por que isso e comum
	Exemplo didatico
	Risco acumulado
	Como evoluir sem parar entrega
	Resumo POG

	My precious
	Sinais classicos
	Por que isso acontece
	Exemplo do efeito colateral
	Exemplo didatico de comportamento
	O mito da protecao
	Como desmontar o padrao sem conflito
	Resumo POG

	Psychoding
	Etapas do transe
	Exemplo classico
	Por que Psychoding pega tao facil
	Sinais de que a tecnica virou rotina
	Exemplo didatico de uso consciente
	Como aproveitar pesquisa sem cair em Psychoding
	Risco de longo prazo
	Resumo POG

	Gambi Design Patterns
	O que sao Gambi Design Patterns
	Por que catalogar a desgracenca
	Estrutura dos capitulos desta secao
	Do accidental para o institucional
	Relacao com Tecnicas e Principios
	Uma nota de honestidade
	Encerramento da abertura

	WTF / WTH / QPE
	A assinatura da entidade
	Como esse padrao aparece
	Causa tipica
	Exemplo didatico
	Como evitar o efeito “codigo magico”
	O perigo social do QPE
	Correcao pragmatica
	Resumo POG

	RCP Pattern (Reuse by Copy and Paste)
	Principio da Reflexao Reprodutoria
	Exemplo didatico
	Smells associados
	Por que times caem nisso
	Evolucao didatica
	Estrategia pratica para legado
	Resumo POG

	Hardcoded Data
	Exemplo classico
	Sinais de que o padrao tomou conta
	Por que ele aparece
	Exemplo didatico de evolucao
	Impactos de negocio
	Correcao sem trauma
	Resumo POG

	Forceps
	Exemplo classico
	Como reconhecer o Forceps no codigo
	Por que o time adota isso
	Impactos no medio prazo
	Exemplo didatico de abordagem melhor
	Estrategia pragmatica de correcao
	Resumo POG

	Ostrich Syndrome Skill
	Forma ritualistica
	Sinais no projeto
	Por que acontece
	Exemplo didatico
	Risco acumulado
	Como tratar sem paralisar entrega
	Resumo POG
	Mini checklist de mitigacao

	Nonsense Flag Nonsense Naming
	Efeito semantico
	Exemplo didatico
	Por que o time cai nisso
	Nonsense Flag: o primo perigoso
	Abordagem pragmatica
	Resumo POG
	Mini checklist de mitigacao

	Commented Code Implementation Comments Forever
	Exemplo classico
	Problemas que esse padrao cria
	Quando isso comeca
	Exemplo didatico de alternativa
	Comentario bom x comentario ruim
	Estrategia pragmatica de limpeza
	Resumo POG
	Mini checklist de mitigacao

	Reinvented Square Wheel Helper
	Exemplo classico
	Sintomas do padrao
	Por que isso acontece
	Exemplo didatico
	Custo oculto
	Correcao pragmatica
	Resumo POG
	Mini checklist de mitigacao

	You Shall Not Pass
	Sintoma clássico
	Por que isso é perigoso
	Exemplo didático (controle de granularidade)
	Quando usar captura ampla, então?
	Estratégia de correção gradual
	Resumo POG

	Perfectness Execution Bulletproof
	Como esse padrão se instala
	Exemplo didático (problema real disfarçado)
	Efeito colateral em cadeia
	Versão didática melhor (sem perder UX)
	Quando o Bulletproof já está em produção
	Resumo POG

	Exception Success
	Como reconhecer esse padrão
	Exemplo didático (versão POG)
	Por que isso aparece em projeto real
	Impactos técnicos
	Exemplo didático (versão menos caótica)
	Resumo POG

	String Sushiman
	Exemplo classico
	Sinais de maturidade Sushiman
	Por que aparece
	Exemplo didatico
	Impacto operacional
	Mitigacao pragmatica
	Resumo POG
	Mini checklist de mitigacao

	Sleeper Human Factor
	Onde esse padrao aparece
	Motivos reais para adocao
	Exemplo didatico
	Impacto tecnico
	Como remover com baixo risco
	Sobre UX real
	Resumo POG

	Black Cat In A Dark Room
	Anatomia da gambiarra
	Cheiro técnico associado
	Exemplo didático de evolução
	Por que times continuam usando Map genérico
	Como usar sem virar caos
	Resumo POG

	Mega Zord
	Caracteristicas classicas
	Exemplo didatico (versao POG)
	Por que times criam Mega Zord
	Efeito colateral
	Exemplo de decomposicao minima
	Estrategia pragmatica de reducao
	Resumo POG

	THUNDER MEGA ZORD
	Como identificar
	Exemplo didatico de risco
	Por que esse padrao surge
	Versao didatica mais segura
	Migracao incremental possivel
	Resumo POG
	Mini checklist de mitigacao

	Controller Confusion
	De onde isso vem
	Exemplo didático (Controller Confusion clássico)
	Sinais de que virou confusão
	Versão didática com separação mínima
	Como reduzir sem reescrever tudo
	Resumo POG

	No More Layers
	Exemplo classico
	Consequencias praticas
	Onde esse padrao e comum
	Exemplo didatico de separacao minima
	Correcao gradual
	Beneficio real de manter camadas
	Resumo POG
	Mini checklist de mitigacao

	Db Is Our God
	Dogmas do padrao
	Exemplo didatico
	Sintomas de culto ao banco
	Por que isso acontece
	Exemplo de equilibrio pragmatico
	Estrategia de migracao
	Resumo POG

	Snow White Returns
	Como o padrao se forma
	Exemplo didatico (caotico)
	Risco principal
	Versao mais organizada
	Como corrigir sem guerra
	Resumo POG
	Mini checklist de mitigacao

	Conclusões
	O que este livro tentou mostrar
	As quatro grandes licoes
	O paradoxo do POGramador
	Sobre culpa e responsabilidade
	Um compromisso para levar daqui
	Encerramento

	Bibliografia Consolidada
	O que é POG?
	História da POG

