Programacao Orientada a Gambiarra

Um Guia Definitivo sobre a Arte da Gambiarra no Desenvolvimento de
Software

Josenaldo Matos Filho

2024

ii

Sumario

1 Agradecimentos
2 Introducao

3 O que é POG?
3.1 Sin6nimos de Gambiarra e e
3.2 Programacao Orientada a Gambiarra
3.3 Referéncias L e e e e e e e
3.4 Notas e e e e e e e e e e

4 Histéria da POG
4.1 O ser humano é uma maquina de reconhecer padrées
4.2 Nao basta reconhecer, tem que espalhar
4.3 Nao basta saber contarovelhas
4.4 Precisamos contarotempo e
4.5 Ocalenddrio romano e e e e e
4.6 Ocalendario Juliano
4.7 O calendario Gregoriano e e e e e
4.8 ChamaoRatinho
4.9 Referéncias e e
4.10Notas e e e e e e e e e e e e

5 Requisitos da POG
5.1 As dimensodes dos Requisitosda POG
5.2 Notas e e e e e e e e e e

6 Dimensao Humana
6.1 Equipe Apdtica e e
6.2 Profissionais Superestimados oo,
6.3 Arquiteto MacGyver e e e e e e e e e e
6.4 Gerente Sem NOGCAO v i i e e e e e e
6.5 Cliente Corrosivo e e e e e e e e e e e e
6.6 Usudrio Abrasivo e e e e e e
6.7 IntrometidoIneptoo
6.8 Dobrador de problemas
6.9 Notas e e e e e e

7 Dimensao Tecnologica
7.1 Tecnologia Inadequada e
7.2 Desconhecimento Técnico e
7.3 Obsolescéncia Adquirida
7.4 Rigidez Arquitetural

iv SUMARIO
7.5 Projeto Malamanhado e 28
7.6 Notas e e e e e e e 28

8 Dimensao Estrutural 29

9 Dimensao Processual 35
9.1 Como reduzir a Dimensao Processual sem matar a produtividade 40
9.2 Encerramento processual e e e 40

10Dimensao Temporal 43
10.10 proprio tempo e e e e e e e e e e e e 43
10.20s quatro Fs e e e e e e e 44
10.3Janela de caos combinadao e 46
10.4Como manter a POG sob controle (sem virar monge da engenharia) 47
10.5Encerramento temporal L e 47

11 Principios da POG 49
11.10 conjunto CcanoniCo oL e e e e e e e e e e e e 49
11.2Como esses principiosoperam i e e e e e e e 50
11.3Principios, Tecnicas e Patterns 50
11.40 compromisso do POGramador 51

12Técnicas da POG 53
12.10 que e uma tecnica POG e 53
12.2Do principio paraoteclado 0o, 53
12.30 arsenal tecnicodestasecaoo e e e 54
12.4Niveisde maestria 54
12.5Como ler esta partedolivroo 54
12.6Encerramentodaabertura oo 55

13Zipomatic versioning 57
13.1Como funcionaoritual 57
13.2Exemplodomundoreal e 57
13.3Sinais de que o Zipomatic dominou00 57
13.4Por que atecnicasurge it it e e e e e e e e e e 58
13.5Exemplo didaticode diferenca 58
13.6Impacto tecnicoe humano0 58
13.7Como sair sem trauma 0 e e e e e e e e e 59
13.8Resumo POG e e e e e e e 59

14 Monkey Patching 61
14.1Como aparece em projetoreal oo, 61
14.2Exemplo didatico (JavaScript) oo 61
14.3Exemplo didatico (Python) 0. 62
14.4Quando a tecnica pode ser aceitavel 62
14.5Sinaisde abuso e e e 62
14.6Mitigacao pragmaticao e e e e e e e e e 62
14.7Resumo POG e e e e e e e 63

15Incremental patching debug 65
15.1Ritual de aplicacao 65
15.2Exemplo classico e e 65
15.30 que quase nunca entranessefluxo 66
15.4Por qUe iSSO € COMUIM v+ v v it et e e e e e e e e e e e e e e 66

15.5Exemplo didatico e 66

SUMARIO

15.6Risco acumulado
15.7Como evoluir sem parar entrega .
15.8Resumo POG

16 My precious
16.1 Sinais classicos
16.2Por que isso acontece
16.3Exemplo do efeito colateral
16.4Exemplo didatico de comportamento
16.50 mito da protecao
16.6Como desmontar o padrao sem confl
16.7Resumo POG

17 Psychoding
17.1Etapas do transe
17.2Exemplo classico
17.3Por que Psychoding pega tao facil .
17.4Sinais de que a tecnica virou rotina
17.5Exemplo didatico de uso consciente

17.6Como aproveitar pesquisa sem cair em Psychoding

17.7Risco de longo prazo
17.8Resumo POG

18 Gambi Design Patterns
18.10 que sao Gambi Design Patterns .
18.2Por que catalogar a desgracenca .
18.3Estrutura dos capitulos desta secao
18.4Do accidental para o institucional .
18.5Relacao com Tecnicas e Principios
18.6Uma nota de honestidade
18.7Encerramento da abertura

19WTF / WTH / QPE
19.1A assinatura da entidade
19.2Como esse padrao aparece
19.3Causa tipica
19.4Exemplo didatico

19.5Como evitar o efeito “codigo magico’

19.60 perigo social do QPE
19.7Correcao pragmatica
19.8Resumo POG

ito

’

20RCP Pattern (Reuse by Copy and Paste)

20.1Principio da Reflexao Reprodutoria
20.2Exemplo didatico
20.3Smells associados
20.4Por que times caem nisso
20.5Evolucao didatica
20.6Estrategia pratica para legado
20.7Resumo POG

21 Hardcoded Data
21.1Exemplo classico
21.2Sinais de que o padrao tomou conta
21.3Por que ele aparece

vi

21.4Exemplo didatico de evolucao
21.5Impactosdenegocio
21.6Correcao semtrauma
21.7Resumo POGo

22 Forceps

22.1Exemploclassico
22.2Como reconhecer o Forceps no codigo
22.3Por que o time adotaisso
22.4Impactos nomedioprazo
22.5Exemplo didatico de abordagem melhor
22.6Estrategia pragmatica de correcao
22.7Resumo POGo

23 Ostrich Syndrome Skill

23.1Forma ritualistica.
23.2Sinaisnoprojeto L Lo o e
23.3Porqueacontece o0 e e
23.4Exemplo didaticoo
23.5Riscoacumulado oo
23.6Como tratar sem paralisarentrega
23.7Resumo POG e
23.8Mini checklist de mitigacao

24 Nonsense Flag Nonsense Naming

24.1Efeito semantico
24 .2Exemplo didaticoo
24.3Porqueotimecainisso
24.4Nonsense Flag: o primo perigoso
24 .5Abordagem pragmatica
24.6Resumo POG e
24.7Mini checklist de mitigacao

25 Commented Code Implementation Comments Forever

25.1Exemploclassico
25.2Problemas que esse padraocria
25.3Quando isso comecao e e e e e e e e e
25.4Exemplo didatico de alternativa
25.5Comentario bom x comentarioruim
25.6Estrategia pragmatica de limpeza
25.7Resumo POGo
25.8Mini checklist de mitigacao

26 Reinvented Square Wheel Helper

26.1Exemploclassico oo
26.2Sintomas dopadrao
26.3Por que issoacontece,
26.4Exemplo didaticoo Lo
26.5Custooculto L.
26.6Correcao pragmatica Lo o oo
26.7Resumo POG e
26.8Mini checklist de mitigacao

27You Shall Not Pass

27.1Sintoma classico

SUMARIO

SUMARIO

27.2Por que isso € perigoso oo e e e e e e e
27.3Exemplo didatico (controle de granularidade)

27.5Estratégia de correcdogradual
27.6Resumo POG L e e

28 Perfectness Execution Bulletproof
28.1Como esse padrao seinstala
28.2Exemplo didatico (problema real disfargcado)
28.3Efeito colateralem cadeia Lo s
28.4Versao didatica melhor (sem perder UX)
28.5Quando o Bulletproof ja estd em produgéo
28.6Resumo POG e e e e

29 Exception Success
29.1Como reconheceresse padraoo
29.2Exemplo didatico (versdao POG) e
29.3Por que isso aparece em projetoreal
29.4Impactos técnicos L. e e e e e e
29.5Exemplo didatico (versdo menos cadtica)
29.6Resumo POG e e e e e e

30String Sushiman
30.1Exemplo classico e e e e
30.2Sinais de maturidade Sushiman
30.3Por que apareCe e
30.4Exemplo didatico L
30.5Impacto operacional L e
30.6Mitigacao pragmatica0 e e e e e e e e e
30.7Resumo POG e e e e
30.8Mini checklist de mitigacao o oo

31Sleeper Human Factor
31.10nde esse padrao @apareCe v . vt e e e e e e e e e e e e e
31.2Motivos reais paraadocao e e e e
31.3Exemplo didatico
3l.4Impactotecnico. e e e e e e e e
31.5Como remover com baixorisco 0oL
31.6Sobre UXreal e e e e e e
31.7Resumo POG e e e e

32 Black Cat In A Dark Room
32.1Anatomia da gambiarrao e
32.2Cheiro técnico associado L L L e
32.3Exemplo didaticode evolugao
32.4Por que times continuam usando Map genérico
32.5C0mO USar SEM Virar CA0S . . . « v « v v v v v e e e e e e e e e e e e e
32.6Resumo POG e e e e

33Mega Zord
33.1Caracteristicas classicaso e
33.2Exemplo didatico (versao POG)
33.3Por que times criam Mega Zord 0000 e
33.4Efeito colateral
33.5Exemplo de decomposicao minima

vii

viii

34THUNDER MEGA ZORD
34.1Como identificar
34.2Exemplo didatico de risco
34.3Por que esse padrao surge
34.4Versao didatica mais segura
34.5Migracao incremental possivel
34.6Resumo POG
34.7Mini checklist de mitigacao

35 Controller Confusion
35.1De onde isso vem
35.2Exemplo didatico (Controller Confusion classico)
35.3Sinais de que virou confusao
35.4Versao didatica com separagdo minima
35.5Como reduzir sem reescrever tudo
35.6 Resumo POG

36 No More Layers
36.1 Exemplo classico
36.2Consequencias praticas
36.30nde esse padrao e comum
36.4Exemplo didatico de separacao minima
36.5Correcao gradual
36.6Beneficio real de manter camadas
36.7Resumo POG
36.8Mini checklist de mitigacao

37 Db Is Our God
37.1Dogmas do padrao
37.2Exemplo didatico
37.3Sintomas de culto ao banco
37.4Por que isso acontece
37.5Exemplo de equilibrio pragmatico
37.6Estrategia de migracao
37.7Resumo POG

38 Snow White Returns
38.1Como o padrao se forma
38.2Exemplo didatico (caotico)
38.3Risco principal
38.4Versao mais organizada
38.5Como corrigir sem guerra
38.6Resumo POG
38.7Mini checklist de mitigacao

39 Conclusoes
39.10 que este livro tentou mostrar
39.2As quatro grandes licoes
39.30 paradoxo do POGramador
39.4Sobre culpa e responsabilidade
39.5Um compromisso para levar daqui
39.6 Encerramento

33.6Estrategia pragmatica de reducao
33.7Resumo POG

SUMARIO

SUMARIO

40Bibliografia Consolidada

ix

SUMARIO

Capitulo 1

Agradecimentos

H4a muitas pessoas a quem eu devo agradecer. Se eu fosse nomear todas aqui, isso seria
uma listagem maior que uma nota fiscal de quem comprou uma bala no supermercado.
Entdo, vou agradecer apenas algumas pessoas muito queridas.

A ordem de apresentacao ndo implica em uma ordem de importancia em minha vida. Até
porque nenhum de vocés é mais importante que minhas gatas Bugada e Lesada.

Primeiro, vou agradecer a minha familia. Vocés fizeram um grande trabalho. Exceto, claro,
quando levaram 15 anos pra perceber que a crianga com a cara colada na TV precisava
usar um oculos mais potente que o Telescépio Espacial James Web. E isso porque a familia
me deu 2 TIAS ENFERMEIRAS MAIS MIOPES DO QUE EU ! J4 sabemos quem cabulou
as aulas de genética pra ir pro boteco. Mesmo assim, eu amo voceés!

Eu posso nao acreditar em Deus, mas acredito em anjas, pq eu ja conheci trés: Luciana
Ribeiro Matos, minha irma de faculdade; Elma dos Passos Rabello, minha primeira sogra
e mae de rim; e Maria Teresa Lima (em memoria), minha segunda sogra e saudosa compa-
nheira de papos malucos. Obrigado por me dedicarem tanto amor, apesar de minhas falhas
e imperfeigdes. Vocés me mostraram que esse mundo ainda vale a pena. Levarei vocés pra
sempre no meu coragao. No rim ndo, porque o rim eu perco.

Um agradecimento especial a minha companheira, Cassiana, que trouxe a luz do amor de
volta a minha vida. E outro agradecimento aos nossos filhos Joseana, Cassinaldo, Jossinalna,
Cijomar e Prosongoléndia, que ndao nasceram ainda, por nao tentarem me matar devido aos
nomes que vou por neles. Eu acho.

Nenhum obrigado aos bolsonaristas e antivacinas. A esses, eu ndo tenho nada o que agra-
decer. A esses, eu s6 desejo que peguem fungo de pneu de caminhdo no simbolo quimico
do cobre.

A todo mundo que acha que eu deveria citar aqui, mas nao citei, eu usarei as palavras
de Bilbo Bolsista: Eu ndo conheco metade de vocés a metade do que gostaria; e gosto de
menos da metade de vocés a metade do que vocés merecem.

CAPITULO 1. AGRADECIMENTOS

Capitulo 2

Introducao

Saudacoes, POGramadores!

Sejamos sinceros... Vocé chegou a esse livro porque esta cansado. Vocé deveria estar tra-
balhando, estudando, desenvolvendo o software que vai deixar seu chefe mais rico... Mas
vocé esta de saco cheio e resolveu gastar seu tempo lendo sobre Gambiarras.

Bem, pode comemorar. Vocé estd no lugar certo. Ja pode tocar Aleluia no celular.

Aqui, vocé nao vai aprender a resolver suas gambiarras. Pode tirar essa ilusao desse seu
coragdozinho maltratado. Aqui, vocé vai aprender a abracar o GLS (Gambi Life Style) de
vez.

Durante a leitura deste tomo sagrado, sua mente passard pelo mais avancado curso de
PNL (POGramacado Neuro Linguiga), que capacitard vocé a identificar, utilizar e idealizar
as POGs que tornarao o inferno uma amostra gratis do seu trabalho.

O livro é dividido em 3 partes.

¢ Conceitos
e Técnicas
* Gambi Design Patterns

Na primeira parte desse livro, “Conceitos” navegaremos pelos principais conceitos ligados
a arte de criar Gambiarras.

O que é um POGramador? O que é uma Gambiarra? Quais o requisitos que um ambiente
deve atender para que a Gambiarra floresca? Quais principios um POGramador deve ter
marcado no amago de seu ser?

Diagrama de estrutura do livro {803x403} {caption: DIagrama sofisticado demonstranto
a estrutura do livro}

Figura 2.1: Diagrama de estrutura do livro {803x403} {caption: Dlagrama sofisticado
demonstranto a estrutura do livro}

4 CAPITULO 2. INTRODUCAO
Na segunda parte, Técnicas, conheceremos as (rufem os tambores!) técnicas que constam
do arsenal de um POGramador.

Por fim, veremos a aplicagao dessas técnicas na terceira parte, Gambi Design Patterns,
que é um catalogo dos principais padroes de projeto da desgracenca.

Ao final deste livro, vocé, POGramador, terd uma caixa de ferramentas tao vasta na capa-
cidade de causar tragédias que sabera que o termo “Caixa de Pandora” sé existe porque
vocé nao nasceu antes. Se tivesse nascido, seria “Caixa de POGramador”.

Boa leitura e que Lady Murphy te acompanhe.

Capitulo 3
O que e POG?

Gambiarra.

Ao assumir o sacerddcio da area da POGramacao, a palavra Gambiarra é cravada em nossos
cérebros e passa a fazer parte do nosso vocabulario.

Muito se discute sobre os beneficios e maleficios da Gambiarra. A maioria faz piada. E
muitos até tentam resistir. Inutilmente, claro. A Gambiarra torna-se uma parte importante
de nossas vidas, quer vocé queira ou nao.

Mas, afinal, o que é uma Gambiarra?

Dentre os civis (aqueles que ndao comungam do conhecimento sagrado da POGramacao), a
palavra Gambiarra quase sempre tem uma conotacao ligada a adaptagoes ineficientes ou
solugOes improvisadas pra problemas que exigem técnicas mais apuradas.

Uma acepgao menos pejorativa e mais objetiva é o uso desta palavra pra designar o conjunto
de lampadas em série, usado para iluminar uma area onde ocorrera um evento, como uma
peca de teatro, uma festa junina ou um bacanal de pessoas sem um pingo de vergonha.

E dessa forma, é que vocé, jovem POGramador, deve ver a Gambiarra: como a luz que
ilumina o espetdculo que é o seu codigo!

“Por definigdo, a Gambiarra é aquilo que é de dificil concepcédo, de inesperada
execucao para tornar facil o uso de algo que sequer deveria existir.” [@Desciclo-
pedia2016]

Ou seja, a Gambiarra é a solucao técnica planejadamente improvisada e resultante
de uma inspiracao momentanea, com o intuito de resolver um problema complexo,
onde o uso de técnicas tradicionais incorrem em alto custo energético para o re-
solvedor.

A duracao da gambiarra é limitada, devendo essa ser substituida, assim que possivel, por
uma solucdo técnica convencional. Portanto, uma boa gambiarra tem, como tempo de

5

6 CAPITULO 3. O QUE E POG?

permanéncia, o valor minimo Tg (Tempo da Gambiarra), sendo que Tg tende ao infinito.

Por ter baixo custo presente, seu custo futuro tende a ser ignorado pelo gambiarrizador, ja
que esse custo certamente sera assumido por terceiros. Portanto, a Gambiarra se mostra
extremamente vantajosa, o que justifica a sua utilizagao.

3.1 Sinonimos de Gambiarra

O termo Gambiarra possui varios sindnimos, que sdo usados nas mais diversas areas. Em
sua maioria, os sindénimos sdo eufemismos, utilizados como forma de esconder, dos civis,
que uma Gambiarra esta sendo usada, ja que a mente primitiva do ser humano comum é
incapaz de perceber o brilhantismo dessa solucao.

Dentre estes sindénimos, temos:

* ATI - Aparato Técnico Improvisado

* ATND - Artificio Técnico Nao Documentado

* CPMF - Conserto Provisorio Mas Funciona

» DAT - Dispositivo Alternativo Temporario

* ERR - Engenharia de Reparos Réapidos

» MASC - Medida Adaptativa a Situagées Criticas

* MTEDM - Manutencao Técnica com Elementos Disponiveis no Momento
+ MUTRETA - Método Unico de Tratamento e Resolucao de Erros Totalmente Adaptéavel
* REZA - Reestruturacdao Emergencial Zuada Auxiliar

* RTA - Recurso Técnico Avancado

* RTA - Recurso Tecnoldgico Alternativo

* RTDM - Recurso Técnico Disponivel no Momento

* RTE - Recurso Técnico de Emergéncia

* RTI - Recurso Técnico Inteligente

* STCT - Solugdo Técnica de Cunho Temporario

No contexto da POGramacgao, temos também os seguintes sinénimos:

* ADP - Adaptacado De Programador

» CACA - Cédigo Avangado Completo e Adaptavel

* CAGADA - Cdédigo Alternativo Gerador de Algoritmos Duramente Aplicaveis
* DADA - Deixa Assim, Depois Arrumo

* IST - Improvisation Solution Tabajara

e ITAC - Implementagdo Técnica Abstratamente Controversa

* RAP - Recurso Avancado de Programacao

* TAPA - Técnica Alternativa de Programacao Avancada

Podemos notar como o uso de siglas é comum na denominacao da Gambiarra. Portanto, a
légica é clara: se algo, na computacgdo, € nomeado com uma sigla, provavelmente é uma
Gambiarra.

3.1. SINONIMOS DE GAMBIARRA 7

O exemplo mais notério dessa regra é o acronimo recursivo GNU, que significa “GNU is
Not Unix”, e denota uma Gambiarra que se gambiarriza em si mesma.

Mas existe um termo que merece uma explicacao adicional, devido as suas peculiaridades:
Marreta®.

3.1.1 Marreta

O termo “Marreta” é usado por quem associa o poder gambiarrizador a ferramenta Marreta,
que é usada no lugar de um martelo. O POGramador também associa o poder gambiarri-
zante ao deus Thor, que resolvia tudo na base do martelo.

A origem do termo esta no ditado “Pra quem s6 sabe usar martelo, todo problema é prego”.

Obviamente que podemos discutir o porqué de néo se usar o termo “Martelo”, mas o uso do
termo correto associado ao ditado é uma incoeréncia gambiarristica! A prépria utilizagao
da marreta, no lugar do martelo, demonstra uma gambiarra verbal, o que fecha o ciclo
légico da gambiarra numa metagambiarra.

3.1.2 Gambiarra em outras linguas

A gambiarra é um conceito universal. Nao importa o pais que vocé visite, sempre existe
uma criatura abencoada alterando alguma coisa, de forma improvisada, para que um pro-
posito nao planejado seja atingido ou algum reparo desejado, mas impossivel, seja tornado
possivel.

Sabendo disso, POGramadores bem informados compreendem que nao precisam apenas
ter competéncia, eles precisam DEMONSTRAR competéncia. E a forma mais simples de
demonstrar competéncia é na comunicacao verbal, principalmente com cliente e civis.

O POGramador deve se utilizar de todo artificio verbal em seu arsenal para mostrar que
é dotado de capacidades técnicas que o marcam como um profissional de primeira linha.
Dentre essas habilidades, est4 a capacidade de dominar o inglés?.

Por essa razdo, é muito comum o uso do vocabulo workaround.

Sempre que vocé ver um profissional usando o termo workaround, saiba que esse profissi-
onal é o POGramador de alto nivel.

Outros sindénimos, em inglés, que sao poucos usados no Brasil e, portanto, podem aumentar
a pontuacao do POGramador, sao as expressoes kludge, jugaad, jury rig e “quick and dirt”.

10 motivo pelo qual o termo “marreta” é tdo importante é bastante 6bvio, mesmo para o leitor mais desatento: é
porqué eu gosto e eu quero. Se vocé ndo percebeu isso, sugiro que procure um profissional especialista(astrélogo,
vidente, adivinho ou &reas correlatas). A propdsito: Porque as pessoas dizem “profissional especialista”? Existe
algum especialista que nao seja profissional? Um especialista nato? “Conheca Enzo Rodrigo, especialista em
computacdo quantica aos 4 anos de idade, entre uma colherada de mingau e outra, resolveu o problema da
conjuncao telepatica de gatos roboéticos.”

20 idioma, ndo um homem proveniente da Inglaterra.

8 CAPITULO 3. O QUE E POG?

Outra expressdao com a qual devemos ficar alerta é “Do It Yourself” (DIY). Sempre que
essa expressdo surge, quase sempre em um livro de feiticarias malégnas® disfargado de
tutorial, pode ter certeza de que existe uma criatura condenada sumonando uma gambiarra
malégna, por conta propria.

Nas maos de pessoas despreparadas, como civis e programadores, isso quase sempre acaba
num arremedo de projeto, como aquela sua tia que tentou fazer um jarro chinés e acabou
com uma réplica do Utero de Satanés no meio da sala.

E por falar em POGramacao...

3.2 Programacao Orientada a Gambiarra

Dentre todas as formas de encarnacao que a Gambiarra possui, este livro tratara de sua
forma digital mais profl'cua4: A POG (Programacao Orientada a Gambiarras).

A Programacéao Orientada a Gambiarras (POG ou WOP - Workaround-oriented
programming) é um paradigma de programacao de sistemas de software que
integra-se perfeitamente a qualquer grande Paradigma de Programacao atual.
[@Desciclopedia2016]

Este paradigma permite que utilizemos de Gambiarras para resolver problemas compu-
tacionais, nao computacionais, espirituais, econémicos e até mesmo sexuais, de forma a
garantir o sucesso do projeto.

A aplicagdo da POG tende a criar mais problemas do que resolve, criando, dessa forma,
um circulo virtuoso que garante empregos a milhoes de POGramadores pelo mundo. Cada
problema criado significa mais trabalho e, portanto, mais empregos!

Para compreender a POG, é necessario compreender quais os requisitos para a formacao
da POG, quais os principios que guiam o POGramador e quais as técnicas que esse POGra-
mador usara. Veremos esses topicos nos préximos capitulos.

3.3 Referencias

[~ref]

3.4 Notas

3Se Shiryu disse que é malégna, entdo é malégna.
40 que capirotos é “proficua”? N&o sei. Mas parece termo de autor chique, entdo, como bom POGramador,
vou usar sem saber o que é, aplicando o Gambi Pattern RCP (Reuse by Copy and Paste).

Capitulo 4

Historia da POG

Quando procuramos definir a primeira POG da histéria, a maior dificuldade esta no fato
de que o bom POGramador ndo deixa rastros de seus méritos, pois POGramador nao usa
comentarios(a nao ser que sejam inuteis).

Esse ambiente de incertezas é terreno fértil para o surgimento de boatos, lendas e mitos,

que acabam por transformar a histéria da POG em um desafio a qualquer historiador. E,

como diz o ditado, “quem n&o tem histéria, inventa”. !

Qualquer afirmacgédo suficientemente convicta é indistinguivel da verdade. [@Ca-
beca2020]

Uma dessas lendas diz que a primeira POG foi criada pelo Papa Gregério XIII?.

4.1 O ser humano é uma maquina de reconhecer padroes
Pra entender como surgiu a provavel primeira POG, precisamos voltar no tempo e entender
o0 porque o ser humanos inventou de dar um nome a cada dia.

Pense em nossos antepassados. Nao na sua avo, ou no avo dela. Vamos voltar muito antes
disso. Vamos voltar ao tempo em que éramos apenas macacos pelados que acabaram de
descer das arvores.

Nesse tempo, o ser humano nao tinha calendéario. Nao tinha reldgio. Nao tinha nada que
pudesse dizer “amanha é segunda-feira”.

Nossas necessidades eram bem mais simples: comer, dormir, fugir de predadores e procriar.
E nés nos tornamos muito bons nisso. Mas como?

Selecdo Natural. Vamos chama-la carinhosamente de Tia Selena.

1Sera que a ficcgdo é a gambiarra do historiador? Fica o questionamento.

2Em minha opini&o, o préprio sistema de numeragio romano é uma grande POG. “Julius, precisamos de simbolos
para os numeros”, disse César. “Que nada, César. Usa letra mesmo, que vai dar menos trabalho. L4 na frente,
alguém troca”.

10 CAPITULO 4. HISTORIA DA POG

Tia Selena nao escohe os mais fortes, nem os mais inteligentes. Muito menos ainda os
mais bonitos. Ela escolhe os que se adaptam melhor ao ambiente. Os que sao capazes de
conseguir recursos necessarios para a propria sobrevivéncia e para sua prole.

Mas como saber o que é comida e o que é veneno? Como saber o que é predador e o que
é amigo? Como saber o que € o sexo oposto e o que é uma ovelha chamada Beeelinha?

Quem era capaz de encontrar as melhores frutas, ou de enxergar aquele coelho carnudo
escondido no meio do mato, comia. Quem achava dgua, bebia. Quem era capaz de encon-
trar uma boa caverna pra se esconder, dormia pra ver o dia seguinte. E quem se tocava de
que aquele coelho laranja e preto, da altura de um boi, e com garras do tamanho de uma
cara humana, ndo era um coelho, mas sim um tigre, sobrevivia.

Acontece que nosso cérebro é uma maquina de reconhecer padroes. Ele é capaz de identifi-
car padrdes em qualquer coisa que ele pode ver, ouvir, cheirar, tocar, degustar ou imaginar.

Geragao ap0ds geracao, os mais capacitados em reconhecimento de padroes se mostravam
mais aptos a sobreviver. E quem sobrevive, se reproduz e passa pra frente seus genes.

Dessa forma, Tia Selena foi aperfeicoando nossa capacidade de reconhecer padroes.

E essa maquina de identificar padroes é tdao boa nisso que ela chega até mesmo a identificar
padrdes em coisas que ndo existem fisicamente. E o que acontece quando vocé vé um
rosto na nuvem, um coelho na lua ou interesse sexual por parte de uma mulher que sé foi
simpdtica com vocé.

4.2 Nao basta reconhecer, tem que espalhar

Mas, além de reconhecer padroes, precisavamos também de um jeito de ensinar esses
padroes aos nossos companheiros humanos. Se eu aprendo que um tigre é um predador
perigoso, eu preciso ensinar isso aos meus companheiros.

Eu nao chamo o Josiscleisson e solto ele na frente do tigre, esperando que ele sobreviva
ao ataque do tigre e aprenda por conta prépria. Eu nao preciso empurrar Josiscleisson do
Barranco da Morte Certa pra ele entender que se cair nesse barranco, vai morrer.

E muito mais simplesChamar o Josiscleisson e dizer “Olha, aquele coelho laranja gigante
tem garras do tamanho de nossa cara! E, ao invés de planta, ele come gente! O nome dele
é Desmembrador! Fica longe dele!”.

O que nés fazemos é nos COMUNICAR. Nés explicamos, aos outros humanos, como as
coisas funcionam. E, ao nos ouvir, eles aprenderm com a nossa experiéncia, evitam nossos
erros e ganham ao repetir nossos acertos. Dessa forma, a comunicacédo se tornou um dos
pilares da nossa sobrevivéncia.

Essa capacidade de nos comunicar nos levou a desenvolver uma rebuscada linguagem. E,
como parte dessa linguagem, nés desenvolvemos também a capacidade de contar.

4.3. NAO BASTA SABER CONTAR OVELHAS 11

4.3 Nao basta saber contar ovelhas

Uma vez que o ser humano comegou a viver em grupos maiores, houve a necessidade de
mais alimento. E, durante essa busca por mais alimento, nossa capacidade de subverter
padroes nos levou a uma gambiarra maravilhosa: a cerveja!

No tépico anterior, faldvamos de um ser humano moleque, o ser humano livre, cuja vida se
limitava a nomadear por ai, catando o que achava pela frente, se escondendo onde podia e
vivendo do que a terra da.

Esse ser humano comia graos, como a cevada. Inicialmente, ele comia a cevada como ela
é. Mas, com o tempo, ele comecgou a perceber que, se ele deixasse a cevada de molho em
agua, ela ficava mais macia.

O gosto deveria ser uma droga, entdao nao levou muito tempo pra algum macaco pelado
com um pouco mais de cérebro perceber que se moesse os graos, a mistura com a agua
ficaia mais facil de consumir.

Com o tempo, o homem foi adicionando coisas a essa mistura. E, em algum momento, nao
se sabe se intencionalmente ou ndo, veio a grande sacada: assar essa mistura resultava
num produto muito mais gostoso e duradouro: o péao.

O péo é um dos principais alimentos da humanidade hé milénios. as primeiras evidéncias
de pdo datam de 30 mil anos atras!

E, pra ter mais pdo, ao invés de sair desembestado pelo mundo, procurando mato, o macaco
pelado percebeu que poderia ter muito mais graos se plantasse os grados novamente. Assim
nasceu a agricultura.

Além do pao, o homem também gostava de carne. Muita carne. E sair por ai cacando os
bichos ja ndo era tao eficiente assim. Em alguns casos, nés exterminamos todos os bichos
de uma regido. E a falta de carne significa que passariamos fome.

Pra resolver esse problema, nds descobrimos que nao precisavamos comer todos os bichos.
Observamos que os bichos também se preproduziam, de tempos em tempos. E, pra ter
mais carne, bastava a gente criar mais bichos.

Mas, como o ser humano é um ser curioso, ele comecou a experimentar outras formas e
preparar o pao. E, em um belo dia, talvez de uma mistura de pao estragada, ou de trigo
apodrecido, o macaco pelado descobriu que, se bebesse essa mistura, ele ganhava super
poderes. O homem descobriu o alcool.

Dessa forma, o que era pra ser um erro virou uma feature e o alcool passou a fazer parte
da vida humana.

Nesse processo de descobrir o pao, a cerveja e o churrasco, o ser humano perdeu o impeto
de sair livre pelo mundo. Ao ser domesticado pelo trigo e pelo gado, o homem criou um
curral pra si mesmo e chamou isso de “cidade”.

12 CAPITULO 4. HISTORIA DA POG

Assim, o ser humano se fixou e passou a viver no mesmo local, onde ele poderia plantar e
colher, criar e matar, sem precisar se deslocar. E, talvez pelotempo extra que ganhou ao se
tornar sedentdrio, talvez pela necessidade de controlar seus rebanhos, o homem comegou
a contar. E nao parou mais.

4.4 Precisamos contar o tempo

O homem agora domina a terra e o gado. Ele é senhor do ambiente. E, como todo ser
imundicado que é, ele nunca fica satisfeito e quer mais. Ele quer mais terra, mais gado,
mais comida, mais bebida, mais mulheres, mais filhos, mais poder.

Acontece que a natureza ndo é um buffet de recursos gratis, que basta vocé chegar e pegar.
A natureza parece mais com uma liquidacao de loja de departamento, daquelas onde até
o anticristo chora e pede perddo, onde vocé perde sua Air Friyer pra uma familia, de 18
pessoas enquanto é espancado com galinhas gritadeiras de borracha.

Na dureza da vida, o macaco pelado percebeu que nem sempre ele precisa plantar e criar.
As vezes, ele pode simplesmente tomar o que é do outro. Pra que plantar e colher, se eu
posso deixar outro ter esse trabalho e, depois, tomar dele?

Dessa forma, o homem aprendeu a guerrear. E como o homem guerreou.

Agora, o macaco pelado precisa saber quando chove. Quando deve plantar. Quando deve
colher. Quando deve abater seu rebanho. Quando deve fazer um sacrificio ao seu deus.
Quando deve sair para a guerra. Quando deve voltar da guerra. Quando seu filho deveria
ter nascido. Quando deve tirar satisfacao com Juvenal, por ele ter visitado sua esposa na
guerra e seu filho ter nascido com a cara do Juvenal.

O ser humano que nao sabe contar o tempo é um ser humano perdido.

Mas nao adianta o macaco pelado contar o tempo em ciclos lunares, se ele nao sabe quando
é a proxima lua cheia. Nao adianta contar o tempo em ciclos solares, se ele nao sabe
quando é o proximo solsticio. Nao adianta contar o tempo em ciclos de chuva, se ele nao
sabe quando é a préxima estacao seca.

Entdo, junto com essa nossa necessidade patoldgica de contar e estruturar as coisas, nés
comecamos também a registrar as coisas. E assim nasceu a escrita.

E foi assim Tia Selena ensinou um monte de macacos pelados a reconhecer padroes, a se
comunicar, a plantar, a criar animais, a cozinhar, a se embebedar, a guerrar, a levar chifre,
a contar e a escrever.

4.5 O calendario romano

A ideia parece simples: vocé pega um imundigcado sem Netflix e poe ele pra observar onde
o caminho que o sol fez no céu, desde o momento em que nasceu até o momento em que

4.5. O CALENDARIO ROMANO 13

se p6s. E manda ele registrar isso. Essa parte é muito importante!

Dai, ele acorda todo dia, antes do sol nascer, e passa o dia inteiro medindo o caminho do
sol. Entao, ele vai perceber (se nao for uma anta) que o Sol nasce e se poe, a cada dia, num
lugar diferente do dia anterior.

Isso ocorre até que, num dia, o sol nasce e se pde no mesmo lugar do primeiro dia. Pronto.
Temos um ciclo. Agora, basta ele contar quantos dias se passaram. E, se ele repetir esse
processo algumas vezes, ele consegue dizer quanto tempo dura UM ANO.

Sim, fizeram isso. E mais de uma vez, na histéria da humanidade. E, dado o niumero de
vezes em que os calendarios mudaram, ou o processo € mais dificil do que parece, ou as
pessoas encarregadas dse mentir se entediavam facilmente, largavam o projeto no meio e
inventavam numeros.

Muitos povos tentaram esse processo. E um que se destacou bastante nisso foram os ro-
manos.

O primeiro calendério romano era um calendéario Lunar, de 10 meses. Segundo a lenda, foi
implantado na criagcdo de Roma, em 753 a.C.

Esse calendario tinha meses com 30 ou 31 dias, com um total de 304 dias. Os 61 dias
restantes eram o inverno, e ninguém ligava pra contar o tempo no inverno.

Aqui nés ja vemos um caso fantastico de POG, em que os 61 dias eram simplesmente CO-
MENTADOS, num claro uso de Commented Code Implementation!

Maledicite scribarum! Nemo curat id quod fit in hieme! Istam lineam commen-
tarium pone. Nemo vocabit si sexaginta unus dies interiit.

- Rémulo, fundador de Roma (753 a.C.)

Em 713 a.C. Numa Pompilio fez a primeira reforma no calendario romano, diminuindo o
nimero de dias de alguns meses e aumentando o nimero de meses para 12.

Dessa forma, o ano agora tinha 355 dias. Como resolver os dias faltantes?
Com gambiarra, claro!

A cada 2 anos, um més extra, de 22 ou 23 dias, era adicionado ao final de “Fevereiro”.
E a decisdo de inserir esse més cabia ao Pontifice Maximo®. Como era um ser humano a
decidir, é 6bvio que nem sempre isso acontecia. E, quando acontecia, nem sempre era feito
da mesma forma. O resultado era que, as vezes, 0 ano nao era tdo previsivel assim.

Parece familiar?

3Maximus Pontifex: Na Roma antiga, o Pontifice maximoera o sacerdote supremo do colégio dos sacerdotes, a
mais alta dignidade na religido romana.

14 CAPITULO 4. HISTORIA DA POG
4.6 O calendario Juliano

Em 46 a.C. Julio César, resolveu botar ordem nesse quengaral. Com a ajuda do sabio Sosige-
nes de Alexandria, Julio Cézar, na época ocupando o cargo de Pontifice Maximo, organizou
um novo calendario.

Esse novo calendario entrou em vigor no dia 1 de janeiro de 45 a.C. Dentre suas principais
caracteristicas, temos:

* Ano de 365 dias

¢ 12 meses (sem meses intercalares)

» Acréscimo de 1 dias, de 4 em 4 anos, para compensar a diferencga de 4 horas, ja que o
ano trépico tem 365 dias e 4 horas

* O primeiro dia do ano passa a ser 1 de janeiro

Esse calendario durou bastante tempo. Dada sua longevidade, pode-se dizerque era um
calendério bastante estavel. Contudo, ele tinha alguns “pequenos” problemas:

* Nao representava o tempo real que a terra leva pra girar em torno do Sol

* Como o0s anos bissextos ocorriam a cada 4 anos, a contagem do tempo ia, aos pou-
cos, se desencontrando dos fen6menos naturais, como a mudanca das estagoes, que
ocorriam em datas fixas.

* Com o passar do tempo e o acimulo dos erros, a data da pdascoa ia se afastando gra-
dualmente do Equindcio da Primavera.

Apés alguns séculos, a diferenca nessas datas ja era de dias. E, como a pascoa era um
feriado religioso, isso comecou a causar problemas.

Como Julio César foi um bom POGRamador, ele deixou esse pepino pra outro resolver 14 na
frente. Coube ao Papa Gregério XIII, em 1582, resolver esse problema.

4.7 O calendario Gregoriano

Apos varios séculos, a diferenca entre o calendario Juliano e o ano Solar foi se acumulando.
Em 1582, o equindcio de primavera ja ocorria 10 dias antes da Pascoa! E essa diferenca
tendia a se acumular ainda mais.,

Por consequéncia, teriamos na época, duas festividades, a comemorac¢ao do Equinécio de
Primavera e a comemoracdo da Pascoa com 10 dias de diferenca (nessa hora, os patroes
ja estdo se cogando de alergia). E, no futuro, com a diferenca almentando, logo teriamos
a Pascoa sendo comemorada em pleno verdo do hemisfério norte, com coelhas de bikini e
padres ensandecidos explicando que a busca pelo ovos deveria ser um simbolo de vida e
renacismento e nao uma festa em homenagem a Sodoma e Gomorra!

Obviamente que essa situagao era insustentavel para a religidao crista e uma atitude preci-
sava ser tomada.

4.8. CHAMA O RATINHO 15

Gregorio XIII, entdo, resolveu fazer uma reforma no calendario. Ele convocou um time de
especialistas, incluindo:

» Christopher Clavius, jesuita alemdo, sabio e matematico
* Ignazio Danti, dominicano, matematico, astronomo e cartografo italiano
 Luigi Giglio médico, filésofo, astronomo e cronologista italiano.

Esse time de estrelas trabalhou nesse problema por 5 anos, apds os quais o Papa, em
24 de Fevereiro de 1582, publicou a bula papal Inter Gravissimas, com as mudangas no
calendario.

A principal mudanga é que o dia seguinte a quinta feira, 4 de outubro de 1582, nao se-
ria sexta feira, 5 de outubro, mas sim sexta feira, 15 de outubro. O papa simplesmente
COMENTOU 10 dias!

Além disso, o algoritmo de definicdo do ano bissexto passou por uma pequena mudanca.
Agora, os anos bissextos seriam definidos da seguinte forma:
» Anos multiplos de 4, exceto os multiplos de 100, mas incluindo os multiplos de 400
Inicio
Declare ano Inteiro;
Declare bissexto Booleano;
Leia(ano);
Se (ano médulo 400 é 0) entdo
bissexto=Verdade;
Senao
Se (ano médulo 4 é O E ano médulo 100 é diferente de 0) entdo
bissexto=Verdade;
Senao
bissexto=Falso;
Fim
Com essas mudangas, o calendario Gregoriano tornou-se, com o pasar do tempo, o calen-
dario mais usado no mundo. Entretanto, ele ndo é perfeito e, em 4909, o calendario estara
adiantado em UM dia em relacao ao calendario solar. Mas isso é problema pra outro PO-
GRamador resolver la na frente.

4.8 Chama o Ratinho

Muitos afirmam que o Papa Gregério XIII foi o criador do Ano Bissexto. Mas, como vimos,
isso é um erro!

E 6bvio que um POGramador experiente é capitalista com os méritos, socialista com os
erros e autoritario com a culpa. Mas o Gregério nem sequer tentou assumir a autoria
desse projeto!

16 CAPITULO 4. HISTORIA DA POG

A ideia de dias a mais para compensar o descompasso entre o calendario e o ano solar é
usada em diversos calendéarios ao longo da historia. Hoje, parece simples contar quanto
tempo tem um ano, mas isso ja foi um grande desafio!

O ano bissexto, especificamente, foi introduzido no Calendario Juliano. Portanto, se consi-
derarmos o Ano Bissexto com a primeira POG, seria Julio César o primeiro POGramador.

Devido a essa confusao, que atribui os mérito da criacdo do Ano Bissexto ao Papa Gregorio
XIII, é que ele é considerado o Padroeiro dos POGramadores e, no dia 29 de Fevereiro, é
comemorado o Dia Internacional da POG.

4.9 Referencias

[~ref]

4.10 Notas

Capitulo 5

Requisitos da POG

Além de empregar POG como acrénimo para Programacao Orientada a Gambiarra, temos
também o termo “pog”, usado corriqueiramente como sin6nimo de “uma gambiarra”, ou
seja, uma simples unidade de gambiarra implementada por um POGramador. Assim, é co-
mum que um POGramador diga “eu fiz uma pog” quando descreve o artefardo’' resultante
de seu trabalho.

No mundo do desenvolvimento de software, existe a nogdo de que uma pog € resultado do
esforco laboral de um POGramador. Tal nogao, apesar de parecer bastante 16gica, é um
engano tao ardiloso que é capaz de enganar até mesmo as mentes mais sagazes.

Um POGramador nao é o criador da pog. Ele é apenas um conduite para uma pog que
deseja vir a este mundo. O trabalho do POGramador é apenas sumonar essa pog, tal qual
faria para sumonar um deménio. Portanto, uma pog nao é criada, ela é sumonada. E, para
que este ritual seja bem sucedido, é preciso que certos Requisitos sejam cumpridos.

De que Requisitos estamos falando? N&o, ndo estamos falando de sacrificar um virgem?.
Estamos falando de condigdes que afetam as probabilidades do nascimento de uma pog.

Os Requisitos da POG podem ser classificados em diversas categorias, de acordo com o
ponto de vista sob o qual olhamos esses Requisitos.

5.1 As dimensoes dos Requisitos da POG

Durante milhares de anos, a humanidade encarou o mundo em 3 dimensodes: largura, altura
e profundidade. A ciéncia do século XX e a ficgao cientifica acabaram por nos desvelar a
possibilidade encararmos a realidade pelo prisma de mais dimensées. Agora, tempo é

1Um artefardo é um artefato que cria, para a equipe, um fardo extra. Dessa forma, um artefardo é um ativo
valioso para o POGramador, pois exige desse mais trabalho, o que ajuda a manter seu emprego.

2Até mesmo porque os valores mudaram e a falta de experiéncia sexual ja ndo é um atributo tdo valorizado.
Que tipo de divindade tapada e ajamantada deseja o sacrificio de um estagidrio sexual? Porque ndo exigir o
sacrificio de um ser humano dotado de experiéncia? Porque nao solicitar o sacrificio de um sénior da putaria, de
um arquiteto da lascivia ou uma diretora da luxudria?

17

18 CAPITULO 5. REQUISITOS DA POG

uma dimensao. Alguns modelos que explicam a realidade apontam a existéncia de até 11
dimensoes!
Podemos, portanto, utilizar o conceito de dimensdes como uma forma de classificar e me-

lhor compreender cada um desses requisitos. E porque o conceito de dimensdes? Porque
fica muito mais estiloso, ébvio! Se a ciéncia e a realidade ndo concordam com minha noc¢ao

de estilo, elas duas que lutem!

Vejamos, portanto, quais sdo os Requisitos da POG, de acordo com cada uma das dimensoes.

5.2 Notas

Capitulo 6

Dimensao Humana

Criar software é transformar o amago do ser humano em impulsos digitais. E, como tal,
o resultado nao poderia ser outro: uma sucessao de erros e desastres que trabalham pra
realizar uma tarefa.

Um bom POGrama ¢ um amontoado de coisas escritas que tem a capacidade de fingir
resolver um problema enquanto cria varios outros. O fator humano é, portanto, o principal
influenciador da POG, o ingrediente com sabor mais forte nessa sopa de desgraca que leva
a manifestacdo digital de uma pog.

Os Requisitos da POG classificados na Dimensao Humana sao aqueles produzidos direta-
mente pela participacdo humana nesse processo. Nao é apenas nossa presenca danosa que
permite que a POG floresca. E necessério que essa presenca ocorra encarnada em algum
dos seguintes estereotipos.

6.1 Equipe Apatica

Quer ver a pog se espalhar como erva daninha num jardim bem nutrido? Entregue seu
projeto a uma equipe apética.

Nao importa qual desgracenca desperte de sua caixa de pandora dos infernos, eles nao
se abalardo. Dia apds dia, essa equipe mostrara que ndo se importa com absolutamente
nada além de seus salarios. E, por isso mesmo, estarao dispostos a usar qualquer recurso
disponivel que garanta o pagamento mensal.

Uma equipe apatica ndo se importa com o passado e ndo liga para o futuro. A tinica coisa
que eles querem é que alguém lhes diga o que fazer (desde que ndo dé muito trabalho) e
que seu pagamento os aguarde, ao fim do més. Nada mais importa. Assim, se uma pog for
util pra resolver o problema atual, eles a usardo sem um pingo de remorso.

Dessa forma, mesmo que um pequeno jardim de pogs se torne a nova Floresta Amazoénica
da Calamidade, uma Equipe Apdatica ndo vai se abalar para resolver nada disso.

19

20 CAPITULO 6. DIMENSAO HUMANA

6.2 Profissionais Superestimados

Junto com uma Equipe Apética, quase sempre aparece um Profissional Supervalorizado,
aquele profissional que todo mundo acredita que ele sabe o que faz e que vai resolver
todos os problemas. Evidentemente que todos os problemas caem no colo dele e ele acaba
sobrecarregado.

Nesse cenario, o Profissional Supervalorizado acaba por cometer desde os erros mais sim-
ples até os erros mais catastréficos. E sdo erros tdo épicos que as pessoas o olham com
admiracao e pensam “UAU, olha sé o tipo de problema com o qual tem que lidar!”, sem
perceber que ele mesmo (e sua Equipe Apatica) é que criaram esses problemas.

Um Profissional Supervalorizado acaba, portanto, sempre recorrendo a pogs para resolver
aquilo que deveria resolver com resolucdes resolvedoras de alta resolutividade, mas que
ele ndo conhece. E que ninguém percebeu, ainda, que ele ndo conhece.

Esse profissional costuma ser um grande invocador de pogs da equipe, o que acaba por
aumentar sua fama e o quanto ele é superestimado.

6.3 Arquiteto MacGyver

Numa equipe POG, ou mesmo em uma empresa usuaria de POG, é muito comum a existéncia
de uma figura mitica: o Arquiteto MacGyver.

Esse profissional ostenta capacidades excepcionais de producdo de sistemas em tempo
recorde, com minimos recursos. Dé a ele 2 dias e uma garrafa de café, e ele volta com um
ERP completo.

O que muita gente nao sabe é que o Arquiteto MacGyver é um mestre no uso de geradores
de POGramas, frameworks e todas as artimanhas necessarias pra criar um calhamaco de
POG que pareca resolver o problema proposto. E o projeto gerado por este profissional,
apesar de impressionar a primeira vista, costuma apodrecer mais rapido que que fruta em
mochila de POGramador.

O Arquiteto MacGyver costuma ter um relacionamento dibio com a equipe, ora atuando
com fonte de inspiracao para ideias pseudodisruptivas, ora atuando como fonte de ins-
piracdo para impropérios capazes de fazer o préprio Moonwalker de Curupira! corar de
vergonha.

'Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemoldgico, do Farofa Doce,
do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17... Para mais nomes, visite Invocador de Nomes
do Capeta

https://invocapiroto.com.br
https://invocapiroto.com.br

6.4. GERENTE SEM NOCAO 21
6.4 Gerente Sem Nocao

Um time POG nao estaria completo sem um Gerente Sem Nogao. Figura frequente no
desenvolvimento de software, o Gerente Sem Nocao é aquele gerente que tem tanto conhe-
cimento da producgao de software quanto um incel possui sobre sexo.

Esse gerente costuma atormentar a vida da equipe questionando prazos dados pelos pro-
gramadores, dando prazos completamente irreais aos clientes, passando tarefas inuteis,
fazendo as perguntas mais imbecis nos momentos mais inapropriados e tomando decisoes
técnicas sem o minimo de fundamento.

Um Gerente Sem Nocdo, mesmo nao digitando uma linha de cédigo sequer, tem um poder
gambiarrizante tdo alto que é capaz de transformar uma equipe bem qualificada nas técni-
cas tradicionais (ou modernas) em uma turba desgovernada capaz de revogar, por acidente,
a propria Lei da Gravidade.

Em nossa supracitada sopa de desgraca, tdo necessaria para nutrir nossas POGs, o Gerente
Sem Nocao é a pimenta.

6.5 Cliente Corrosivo

Se o Gerente sem Nocdao é a pimenta, o Cliente Corrosivo é o “tompero” [@Jacquin2019].

O Cliente Corrosivo ¢ a entidade que paga por duas coisas: pelo projeto e pelo direito de
estragar o projeto. Ele ndo apenas se coloca como financiador dessa empreitada, mas como
um dos principais obstaculos que devem ser superados.

Dentre os comportamentos nocivos deste cliente, temos:

¢ Interferir, a todo momento, nas tarefas da equipe, passando por cima da autoridade
de todos os idiotas que ele estd pagando para comandar essa equipe.

» Fazer solicitagbes impossiveis e pedidos impraticaveis, a essa mesma equipe, igno-
rando o aviso dos imbecis que ele contratou para avisa-lo sobre solicitagdes impossi-
veis e pedidos impraticaveis.

* Esquecer acordos que ele mesmo aceitou e quebrar contratos que ele mesmo assinou.

* Ignorar parametros de completude de tarefas que ele mesmo estabeleceu.

» Voltar atras na palavra que ele mesmo deu.

* Pedir mudancas fora do escopo que ele mesmo aprovou.

» Ignorar o fato de que a equipe que ele contratou é formada de criaturas da espécie
humana e nao de rob0s. Essas criaturas tém necessidades importantes que devem
ser plenamente satisfeitas, tais como sono, fome, sede, cansaco e desejo homicida de
atirar pedras de granito, que pesam 5kg cada, na cabeca do cliente.

O Cliente Corrosivo tem esse nome porque sua atuacao no projeto é semelhante a de um
acido, corroendo até mesmo o melhor dos materiais e transformando uma boa equipe em

22 CAPITULO 6. DIMENSAO HUMANA

aterro sanitario de boas ideias, capaz de produzir o mais puro suco de chorume em forma
de cédigo POG.

6.6 Usuario Abrasivo

Ainda que o cliente nao seja corrosivo, seu séquito de lacaios, os usudrios abrasivos, podem
contribuir para criar um ambiente propicio ao aparecimento de POG.

O Usuadrio Abrasivo é aquele usudrio que ndo tem poder de decisdo sobre o andamento do
projeto, mas tem o poder de atravancar e atrapalhar o desenvolvimento deste. Algumas
vezes ele age como se sua vida estivesse ameagada por este projeto (e as vezes ele esta
certo). Em outras, ele simplesmente se recusa a fazer o que tem de fazer.

Nao imposta qual seja o motivo, o Usuario Corrosivo tem o dom de irritar a equipe. Até
mesmo uma Equipe Apatica pode perder a paciéncia diante de um Usudario Abrasivo. Sua
capacidade de antagonizar membros da equipe é comparavel a capacidade que um ocu-
pante do cargo mais alto de uma republica tem de fazer merda.

Ele simplesmente sabota o projeto, nao testa o que deve testar, nao fornece informacgoes
para os analistas, ndo colabora com ideias e insigths (a ndao ser que sejam extremamente
odiosas e custosas) e sempre que pode, reclama de tudo o que é feito. Se a equipe lhe der
uma barra de ouro, o Usuario Corrosivo reclama que tem mais peso pra levar pra casa.

Esse usudrio causa pequenos danos, no decorrer do projeto, que vao se acumulando. Ana-
logo ao Efeito Borboleta, o Usuario Abrasivo causa o Efeito Asa de Urubu, que causa o
mesmo furacdo, s6 que com o cheiro podre e carnicento do miasma que é a sua alma. Pra
satisfazer o desejo de sangue deste usuario, os POGramadores recorrem a toda ordem de
sortilégios e mandingas disponiveis no seu cinto de utilidades de POG.

Obviamente que isso vira um circulo vicioso, onde mais pogs sdo necessarias pra aplacar
a sede de sangue, que s6 aumenta devido as pogs ja usadas, numa retroalimentacao de
energias negativas que faz qualquer adepto do namasté emplacar um sonoro sifudé.

6.7 Intrometido Inepto

Pra completar a corte enviada pelo Estraga Suruba?, temos o Intrometido Inepto. Essa
figura aparece em diversas fases do projeto com uma tinica missao: se intrometer onde nao
é chamado para fornecer uma opinido ndo solicitada sobre um assunto que nao domina.

O Intrometido Inepto costuma colaborar na criacao de pogs ao colocar ideias perniciosas
nas mentes de tomadores de decisoes despreparados para lidar com essa influéncia danosa.

E esse filho do Chinelo Emborcado® que planta, na mente fértil do Gerente Sem Nocédo, a

2Estraga Suruba é outro nome do capeta. Ver nota 1.
3Chinelo Emborcado é outro nome do capeta. Ver nota 1.

6.8. DOBRADOR DE PROBLEMAS 23

ideia de que seria muito 1util se o sistema financeiro tivesse uma funcionalidade de geracao
aleatoria de nomes do capeta no campo de nomes dos fornecedores.

E esse Torresmo de Prepicio* que, num ato de covardia e prazer pelo sofrimento alheio,
convence o cliente de que o sistema precisa ter a capacidade de enviar emails através de
pombos-correio, caso a internet caia.

E esse Tempero de Miojo5 que diz para o Gerente Sem Nogao que a equipe vai render muito
mais se for marcada uma palestra motivacional com coach quantico numa sexta feira, as
18h30. E sem lanche, pois a fome é uma motivadora muito fote.

Se vocé identificar um Intrometido Inepto junto aos tomadores de decisao associados ao
seu projeto, a atitude mais correta e humana é capturar e entregar para o Ibama. Se isso
nao for possivel, reze. Se for ateu, essa é uma boa hora pra adotar uma religiao.

6.8 Dobrador de problemas

Ao tratarmos da dimensao humana, ndo poderiamos deixar de mencionar um papel que
pode ser assumido por qualquer um dos membros dessa pequena seita de invocacao de
calamidades digitais: o Dobrador de Problemas.

Nao se sabe qual fend6meno causa essa transfiguracao na criatura humana. O que se sabe
é que, em qualquer momento de um projeto, o espirito do Dobrador de Problemas pode
encarnar em seu avatar (que poder ser qualquer um, mas quase sempre é o gerente) e esse
passa controlar os problemas da equipe com toda destreza e graciosidade do Nariz Fora
da Méscara® tentando causar um pequeno apocalipse.

Tal qual um Jesus da Desgracenca, o Dobrador de Problemas pega um pequeno empecilho
pra resolver e, a partir desse minusculo pedacinho de caos, ele gera um tufdo de esmerda-
lhamento que multiplica e joga problemas pra todos os lados, fazendo o efeito Asa de Urubu
parecer um folheto de igreja que mostra uma crianga loira montando um ledo vegano.

Vocé da um problema pra essa criatura desatinada resolver e, de repente, ela invocou um
Tiamat de 37 cabecas. Era pra fazer um café. Uma misera garrafa de café. Como isso ge-
rou um prejuizo de 3 bilhdes, para o cliente, 3 mil empregos perdidos (nenhum de POGra-
mador) e uma crise diploméatica com o Canadd? COMO INFERNO ALGUEM CONSEGUE
ARRUMAR UMA BRIGA COM O CANADA?

Ninguém sabe. Mas agora o gerente exige a contratacdo de mais 18 POGramadores e
nosso espirito de luz (de cabaré) pode retornar ao seu limbo, feliz pelos empregos criados
e projetos extendidos, e aguardar a proxima vez que sera sumonado.

Quem serd o préximo a ser possuido?’

4Torresmo de Preptcio é outro nome do capeta. Ver nota 1.
STempero de Miojo é outro nome do capeta. Ver nota 1.
6Nariz Fora da Méascara é outro nome do capeta. Ver nota 1.
"Certeza que é o gerente. E sempre o gerente.

24 CAPITULO 6. DIMENSAO HUMANA

6.9 Notas

Capitulo 7

Dimensao Tecnologica

Uma outra dimensao que afeta constantemente nossos projetos, adubando o jardim da
desgracenca para que a POG possa germinar com todo vigor, é a Dimensdo Tecnoldgica.

Ainda que todos os seres humanos envolvidos tenham seus espiritos imaculados e imbuidos
das melhores intengdes, existem os Requisitos da POG ligados a fatores tecnolégicos. Esses
Requisitos, quando satisfeitos, levam a tecnologia, antes usada para solucionar problemas,
a se tornar uma fonte saudavel de novos problemas mantenedores de emprego.

Temos, portanto, as seguintes apari¢coes que, quando presentes, trazem a equipe o terror
necessario para que a pog possa ser devidamente conjurada:

7.1 Tecnologia Inadequada

Ah, a beleza da tecnologia. Milhares de anos de esforco cientifico, milhdes de horas de
trabalho aplicadas com o intuito de facilitar o trabalho humano. O apice do conhecimento
encarnado em forma de técnica. E o que a equipe escolhe para cortar um pao? Um martelo.

Isso mesmo. Um martelo. Um maldito martelo!
Para quem sé sabe usar martelo, todo problema é prego.
- Jesus, ensinando POGramacao ao Thor

A escolha de tecnologias inadequadas é um prato cheio pra quem quer se fartar no jantar
da POG. Com a tecnologia errada em maos, a equipe é obrigada a invocar todo tipo de
pog pra resolver os problemas para os quais foram contratados. E, logo em seguida, eles
precisam usar mais pogs para resolver os novos problemas que as pogs usadas criarao,
num maravilhoso circulo vicioso que logo se torna o furacdao do esmerdalhamento!

A decisao sobre o uso de uma tecnologia inadequada pode ter muitos culpados. Pode ser
uma sugestao do Intrometido Inepto, pode ser uma decisao do Gerente Sem Nocao, pode

25

26 CAPITULO 7. DIMENSAO TECNOLOGICA

ser uma escolha da Equipe Apadtica... Qualquer um pode ser culpado por esta decisao, o
que torna esse requisito um dos mais democraticos e faceis de ser atingido!

Quando os culpados estao na equipe, isso pode ser um sintoma de outro requisito que,
quase sempre, aparece junto com a escolha de uma tecnologia inadequada...

7.2 Desconhecimento Técnico

Porque contratar profissionais qualificados se contratar uns estagiarios e colocar um Ar-
quiteto MacGyver pra ser baba deles? Talvez um ou dois Profissionais Superestimados?
Porque nao acrescentar logo um babuino raivoso, com um dildo de borracha de 78 cm que
ele usa como porrete?

Aqui temos um Requisito da POG que faz com que a POG praticamente surja sozinha. A
falta de conhecimento técnico por parte de membros da equipe cria um ambiente onde a
pog cresce livre e faceira.

Esse tipo de equipe é bastante comum e é a semente pra quase todos os outros males que
aparecem associados a POG. Uma equipe sem o devido conhecimento acaba, praticamente
sozinha, criando uma reagdo em cadeia que gera varios dos outros Requisitos da POG. Essa
equipe se torna o tolete inicial de uma gigantesca avalanche fecal que pode varrer qualquer
projeto para os circulos mais profundos do inferno.

7.3 Obsolescéncia Adquirida

Mesmo um trabalho bem feito pode acabar apodrecendo com o tempo. E é nesse momento
que o vendedor, tal qual o Explica Piada de Encruzilhada!, surge para convencer seu ge-
rente de que o software dele vai ajudar a aumentar a produtividade da equipe. E é assim a
equipe acaba tendo que usar aquele servidor de aplicagoes que foi renegado pelo proprio
criador por ser complexo demais.

Mas esse nao € a unica forma de vocé acabar tendo que trabalhar com uma carrocga digital.
O problema da Obsolescéncia Adquirida é que ela vai chegar e a questdo nao é elimina-la,
mas sim com quanto dela vocé consegue conviver.

Aquele computador encarrogado que vocé é obrigado a usar no trabalho ja foi uma Ferrari!
O software de registro de ocorréncias feito em applets Java, 1999, e que ainda é usado
por essa grande companhia telefonica, ja foi uma obra prima da engenharia humana. O
problema é que o tempo passa e e 0 ser humano quer lidar e inventar NOVOS problemas.
Ter que lidar com os antigos é chato.

'Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemoldgico, do Farofa Doce,
do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17... Para mais nomes, visite Invocador de Nomes
do Capeta

https://invocapiroto.com.br
https://invocapiroto.com.br

7.4. RIGIDEZ ARQUITETURAL 27

Mas é aqui, amigo POGramador, que uma oportunidade surge: a obsolescéncia adquirida
cria uma oportunidade rara para o desenvolvimento, e até mesmo masterizacdo, de suas
habilidades de POGramacao.

Um ambiente com infra-estrutura tao estavel e madura oferece uma chance tinica de testar,
por longos periodos de tempo, suas pogs. E quando dizemos “longos”, estamos falando
longos mesmos! Existem pogs rodando hd mais de 50 anos no setor bancério!

Vocé pode criar seu préprio Ano Bissexto e ser imortalizado!

7.4 Rigidez Arquitetural

Flexibilidade. Nunca um conceito foi tao deturpado pela academia e pelos ditos defensores
de boas praticas. Em nome da “flexibilidade”, eles maculam nosso cédigo com praticas que
levam nossos softwares a se adaptarem a varias situagcées SEM que nossa intervencao seja
necessaria.

Olhe para o colega ao seu lado. Se ele faz uso desse tipo de técnica, ele é um traidor. Nao
hé outra palavra para designar esse filho do Agonia de Domingo?, esse rebento do Equagao
de Segundo Grau®, esse capacho do Corote Azul*.

Flexibilidade real é a capacidade que seu software tem de ser usado para outras situagdes,
mas com SUA interven¢do. Num ambiente de flexibilidade saudéavel, vocé pode pegar seu
sistema de controle de video locadora® e, com SUAS adaptacdes (obviamente em formato de
pogs), transformar essa pequena pérola da engenharia humana em um sistema de controle
hospitalar! Assim, vocé transforma em oportunidade o produto da Obsolescéncia Adquirida
e ainda se utiliza do principio da Enjambracao para economizar tempo e lucrar!

Portanto, ao criar seus sistemas, torne a arquitetura dele o mais rigida que conseguir, para
impedir outros de roubarem seu trabalho, mas flexivel o suficiente para que vocé possa
adaptar esse sistema a uma situacao completamente adversa da original, com mais gambi-
arras! Lembre-se: quanto mais gambiarra, mais emprego!

2Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemoldgico, do Farofa Doce,
do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17... Para mais nomes, visite Invocador de Nomes
do Capeta

3Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemoldgico, do Farofa Doce,
do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17... Para mais nomes, visite Invocador de Nomes
do Capeta

4Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemolégico, do Farofa Doce,
do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17... Para mais nomes, visite Invocador de Nomes
do Capeta

5Se vocé sabe o que esse termo significa, vocé é grupo de risco do Coronavirus. Fique me casa e laves as maos.

https://invocapiroto.com.br
https://invocapiroto.com.br
https://invocapiroto.com.br
https://invocapiroto.com.br
https://invocapiroto.com.br
https://invocapiroto.com.br

28 CAPITULO 7. DIMENSAO TECNOLOGICA

7.5 Projeto Malamanhado

Inicio de projeto. A equipe se retune (ja comecgou errado!) para discutir a arquitetura e

6

sempre tem um Arquiteto MacGyver que, instigado pelo Batizado no Chorume®, resolve

trazer a pauta as “melhores praticas do mercado”.

Esse era o momento em que o regimento da empresa deveria deixar claro que permite o
uso de violéncia (CADE O MALDITO BABUINO???).

Esse arquiteto traira estd criando uma armadilha com o Ginico intuito de alavancar a prépria
carreira e mudar de empresa. E, enquanto ele sai pra se esbaldar com sua nova proposta
salarial indecente, larga essa Equipe Apéatica com um projeto super bem estruturado... que
ninguém sabe mexer.

O resultado é que os membros da equipe vdo mutilando o projeto e enxertando pogs como
se nao houvesse amanha. Isso vai criando um Frankenstein de cddigo que, tal qual o citado
monstro, se volta contra a sua equipe, aumentando exponencialmente a quantidade de
gambiarras necessarias para manter o sistema funcionando.

Um Projeto Malamanhado tem o seu valor. Ele é democratico. Todo mundo consegue pogar
nele, desde o Programador Supervalorizado frequentador de reunides sexuais de seguranca
duvidosa até aquele estagiario que tem tanta concentracao alcodlica no sangue que poderia
entrar em combustdo esponténea!

O problema é que sem um guia adequado, o projeto que parecia um pedago de mal caminho
se transforma logo em uma auto estrada da perdigao!

7.6 Notas

6Moonwalker de Curupira é um dos nomes do Virose Bacteriana, do Discurso Epistemoldgico, do Farofa Doce,
do Azuado, do Pai da Mentira, do Filho do Presidente, do Fede a 17... Para mais nomes, visite Invocador de Nomes
do Capeta

https://invocapiroto.com.br
https://invocapiroto.com.br

Capitulo 8

Dimensao Estrutural

Temos uma equipe de anjos imaculados criados pelo préprio Linus Torvalds, adeptos da
melhores praticas e munidos das mais belas tecnologias.

E possivel que, frente a tamanha santidade, ainda seja possivel que a POG encontre seu
caminho para a luz?

Sim, é. Nenhuma santidade resiste a problemas da Dimensao Estrutural.

8.0.1 Cafeina Ausente

O santo néctar dos deuses, o combustivel da invocagao codistica, o puro sumo da estimula-
¢do neuronal geradora de cédigo tem um nome: cafeina.

Este estimulante saudavel (principalmente se tomado em doses que fariam um elefante voar
propelido pela tromba) é o combustivel que nosso cérebro usa para transformar ideias em
cédigo. Esqueca tudo o que ja te disseram sobre glicose, ATP, PQP ou VSF. E a cafeina que
vai virar cédigo.

A cafeina assume varias formas. As mais comuns sdo o café (a mais tradicional), o cha
(quase ninguém relevante para o cddigo toma), ou em forma de refrigerante escuro que
nao mencionarei o nome porque nao esta me pagando (#paganois).

E o que acontece quando um Gerente Sem Nogao resolve “economizar” no café?
A POG vem. E vem com forga.

Cérebros descafeinados tendem a procurar (no Google) a solugao mais facil (Starckover-
flow) para um problema. E acabam adotando a primeira pog que encontram.

Além disso, por estarem com seus pensamentos se movendo no mesmo ritmo dos civis, os
POGramadores se tornam mais suscetiveis aos Intrometidos Ineptos, que, curiosamente,
aparecem com mais frequéncia nesses momentos.

29

30 CAPITULO 8. DIMENSAO ESTRUTURAL

Curiosamente, a cafeina em excesso (conceito cientificamente controverso, ja que é cienti-
ficamente comprovado que nao existe o conceito de “cafeina em excesso”) também acaba
por acelerar seus POGramadores e aumentar a taxa de geracao de pogs deles.

8.0.2 Trono da Tortura

Trabalhar ja é uma atividade deprimente. Quem, em sa consciéncia, diz que ama trabalhar
quando poderia estar fazendo atividades mais lidicas, como cuidar de uma fazenda virtual,
quebrar pedras coloridas ou combater demoénios, em pleno inferno, com uma metralhadora
do tamanho de seu complexo de inferioridade?

Mas nos precisamos trabalhar. Vivemos no capitalismo e, a ndo ser que vocé seja um
privilegiado que nao precisa pagar suas proprias contas, € necessario fazer programa por
dinheiro.

O trabalho do POGramador é resolver problemas. E, pra cada problema resolvido, ele
precisa criar pelo menos mais dois. E parte do jogo. Mas pessoas confortaveis tendem a
resolver mais problemas do que criam. Isso é ruim para os negdcios.

Para resolver este problema (e criar mais), o Gerente Sem Nocao inteligente sabe que
sacrificios devem ser feitos. No caso, o sacrificio da coluna do POGramador. E por isso que
sua cadeira, essa onde vocé esta sentado agora, é um lixo.

Esse instrumento de tortura, abandonado pela santa inquisicao por ser demasiado desu-
mano, é a primeira escolha de uma empresa que deseja manter alta taxa de geragédo poga-
cional.

Observe sé os gamers. Observe eles, em suas cadeiras estilosas e confortaveis, algumas
equipadas até com vao centrar para instalagdo de um shit bucket (ndo procure no Google).
O que eles fazem o dia inteiro? RESOLVEM PROBLEMAS!

Eles salvam planetas de tiranos, ajudam encanadores a resgatar princesas das maos de
calangos anabolizados, vencem, pela milésima vez, a guerra contras os nazistas (coisa que
nés, humanos normais, ainda falhamos em fazer) e ainda encontram tempo para roubar,
matar, espancar pessoas e atropelar velhinhas inocentes em cidades ficticias. Tudo isso
sentado!

E 6bvio, portanto, uma equipe detentora de um aparato portador de busanfas de alta qua-
lidade é incapaz de manter o fluxo problematico tdo necessario a manutencao da lucrativi-
dade corporativa.

Boas cadeiras s6 servem pra tornar POGramadores em programadores. E ndo é isso que
nds queremos, certo?

Se ndo bastasse tudo isso, cada POGramador com problema na coluna ¢ um consumidor
voraz de medicamentos e, em casos mais graves, consultas médicas e a profissionais de
procedéncia duvidosa. Imagine toda essa gente desempregada e desamparada, apenas
porque alguém resolveu que quer se sentar confortavelmente.

31

Cadeira ruim é dinheiro pra todos!

8.0.3 Automacao Capenga

Se tem uma coisa que ajuda a acelerar o trabalho, é a automacgdo. Cada tarefa automatizada
é trabalho a menos pra equipe. E o que isso significa? Que vocé vai sair mais cedo? Que
vai ter folga? Que vai ter mais dinheiro no bolso?

Nao. Significa que vocé terd menos trabalho. E menos trabalho é igual a menos emprego.

Uma automacao bem feita, além de diminuir o seu trabalho, diminui sensivelmente a taxa
de erros, gerados pela equipe devido a execucao repetida de tarefas complexas. E isso é
muito ruim, pois elimina uma importante fonte geradora de pogs espontaneos.

Como resolver isso? Nao automatizando, ébvio. E, se for necessario automatizar, faca com
que a execucao dessa automacao seja tao ou mais complexa que o proprio processo que foi
automatizado.

Dessa forma, ao executar um processo capengamente automatizado, podemos continuar
inserindo, aleatoriamente, erros no ambiente, de forma a estimular a criagao de pogs para
a resolucao desses erros.

8.0.4 Poluicao Sonora

De todos os requisitos necessarios para a implementagao de um ambiente saudavel e pro-
picio a geracgao de pogs, a Poluicao Sonora costuma ser um dos mais subestimados.

E préatica recorrente dos POGramadores o uso de fones de ouvidos. Muitos alegam que
isso ajuda na concentragdo, mas a verdade é que eles estdao apenas utilizando uma forma
de manter outros seres humanos a distancia. O fone de ouvido é o isolamento social antes
de ser modinha.

Acontece que POGramadores, isolados de outros POGramadores, perdem muito do seu
potencial de gerar POGs! Além disso, o uso da musica como isolante acustico ajuda o
POGramador a entrar num estado de fluxo mental que pode fazer com que ele RESOLVA
mais problemas do que consegue CRIAR, que é a funcdo primordial dele.

Dessa forma, faz-se necessario criar um ambiente em que o som da barafunda a sua volta
consiga penetrar a barreira de protegao dada pelos fones!.

Para atingir tdo nobre objetivo, podemos usar de diversos artificios, alguns permanentes e
outros temporarios. Lembre-se que a aleatoriedade do barulho ajuda a atrair a atengao do
POGramador.

Podemos fazer desde reunides ruidosas, perto do ambiente de trabalho, até colocar um som
ambiente com trilha sonora qualidade duvidosa em um volume agressivamente alto.

TAtencéo: JAMAIS tire os fones de um POGramador. Isso desabilita qualquer parte do seu cérebro que controle
a violéncia e torna o POGramador passivel de comportamento bestial, semelhante a um felino acuado por alguém
vestindo uma fantasia de gato de loja de fantasias baratas.

32 CAPITULO 8. DIMENSAO ESTRUTURAL

Podemos implantar um funcionario, com o tom vocal de um feirante de novela da Globo,
proximo a equipe. E podemos atingir um combo se esse funcionario for dotado de um
telefone que toca mais que celular vazado em rede social.

Telefones, alids, pode ser uma arma extremamente eficiente para esse fim. Dé varios tele-
fones para a equipe. Se possivel, um pra cada POGramador. Agora, dé esses nimeros para
os clientes. Veja a POG fluir de seu projeto como a dgua flui nas cataratas do Iguacu.

8.0.5 Transito Sanitario

Apesar do que muitos empresarios acreditam, os membros de uma equipe produtora de
POGramas pertencem a espécie humana. O nimero de erros que eles cometem é a maior
prova disso. Nem precisamos olhar o DNA.

Como seres humanos, seus corpos possuem necessidades que devem ser adequadamente
satisfeitas para que continuem funcionando. T4, ndo precisa ser tao adequado assim. Se
garantirmos o minimo de alimentacao, hidratacao, excrecao, sono, ingestdo de cafeina e
alimentacgdo de ego com infantilidade no ambiente de trabalho, o POGramador sera plena-
mente capaz de exercer as suas funcoes geradoras de lucro.

Dessas necessidades, devemos destacar a influéncia de uma sobre a producao individual
de pogs: a necessidade de defecar.

Desde a revolucgao industrial que o capitalismo tenta, a todo custo, controlar a necessidade
que individuo tem de colocar pra fora o resto de sua alimentacao. Tempo é dinheiro e
funcionario no banheiro estd ganhando pra defecar. Isso nao é desejavel.

Contudo, um funcionario impedido de usar o banheiro pode se tornar um problema pra
empresa. Uma pessoa forcadamente entupida é incapaz de produzir qualquer coisa que
seja, até mesmo a mais sinistra POG. Além disso, uma empresa que venha a aderir a tais
praticas pode ser mal vista pelo publico, seja por uma denuncia as autoridades competentes,
seja por um episddio se surto simiano em um programador de meia idade, que, tomado pelo
odio, passa a cagar na mao e a atirar merda nos clientes, funcionarios e patroes. Isso nao
seria legal. Viralizaria em site de video? Sim. Mas ndo seria legal.

Como conciliar o atendimento a uma necessidade tdao béasica do ser humano com as neces-
sidades de geracao de POG da equipe?

Use estrategicamente a localizacdao do sanitdrio!

Ou o banheiro fica préximo a onde as pessoas trabalham, que é para elas se inspirarem no
cheiro de merda, ou fica londe de onde trabalham, para que a preguica as faca demorar
mais pra ir ao banheiro, o que gera uma enorme pressao fecal que as estimule a fazer mais
merdas no codigo.

Seja inspiracao interna ou externa, a posicao do banheiro pode potencializar o nivel de
producédo de sua equipe!

33

34

CAPITULO 8. DIMENSAO ESTRUTURAL

Capitulo 9

Dimensao Processual

O capitalismo (conhecido carinhosamente como Capetalismo) é uma beleza. La estd a
equipe engajada e preparada, com as melhores tecnologias do mercado, num escritério
tdao bem feito que dé vontade de adicionar o termo “home office” a alguma lista da antiga
Inquisicao... Mas o capetalismo precisa da POG e alguém tem que fazer alguma coisa.

E nesse momento que entra em cena a equipe de processos da empresa!

A Dimensao Processual engloba os requisitos que sao satisfeitos e documentados através
dos processos escolhidos pela empresa por puro sadismo organizacional.

Enquanto a Dimensdo Humana dé o empurrdo inicial e a Dimensao Tecnoldgica fornece as
ferramentas da desgracenca, é o processo que oficializa o caos com logo da empresa, ata
de reuniao e plano de agcao em PowerPoint.

Em resumo: processo ruim nao sé permite POG, ele industrializa POG.

9.0.1 Prazos suicidas

Em qualquer empresa humanamente decente, prazos sao definidos de acordo com um con-
junto de fatores que tenta minimizar ao maximo as incertezas:

 Estatisticas dos projetos anteriores

* Custos

¢ Estimativa da equipe sobre tempo e complexidade das tarefas
¢ Velocidade da equipe

» Técnicas de engenharia para calculo de prazo

Mas noés sabemos que a diminuicao das incertezas leva a diminuicdo do surgimento de
POGs, certo?

Nesse contexto, devemos manter um certo nivel de incerteza no ar. Contudo, ao se definir
um prazo para as tarefas, devemos optar pelo prazo mais longo?

35

36 CAPITULO 9. DIMENSAO PROCESSUAL

Prazo suicida {caption: Diagrama meticulosamente criado para ilustrar o tamanho ideal
do prazo}

Figura 9.1: Prazo suicida {caption: Diagrama meticulosamente criado para ilustrar o ta-
manho ideal do prazo}

JAMAIS!

Como podemos ver no diagrama acima, qualquer prazo que a equipe aceite sera devida-
mente deserdicado com progcrastinagdo (ou pior, estudando!), panico e choro! Somente
na pequena porc¢ao final do prazo é que a equipe vai se dedicar a entrega, trabalhando
ferozmente e gerando POGs como se nao houvesse amanha.

Como saber exatamente quéo curto deve ser o prazo? E simples:

1. Pergunte o prazo pra equipe

2. Divida esse prazo por dois.

3. Repita o passo 2 até observar a vida se esvaindo dos membros da equipe. Se ouvir
dentes rangendo, gemidos de dor e perceber claramente a alma tentando sair do corpo,
vocé esta no caminho certo.

O Prazo Suicida é um requisito que deve ser levado em consideragdao em qualquer projeto
POG. Afinal, se a equipe nao estiver sob pressao, nao vai entregar nada!

9.0.1.1 Exemplo didatico: requisito simples, processo caodtico
Demanda original:

“Sé precisamos adicionar um campo de telefone no cadastro.”
Processo POG padrao:

Vendas promete para hoje.

Produto manda dudio no WhatsApp com “regra principal”.
Cliente muda o formato no meio da implementacao.

QA testa uma versao antiga da regra.

o Wi

Producéao recebe hotfix “temporario definitivo”.

Resultado final: nao existe mais “campo de telefone”. Existe uma entidade ontoldgica cha-
mada ContatoComercialPrioritario, com trés mascaras, duas validagoes contraditérias e
uma trigger triste no banco.

9.0.2 Aparecimento caotico de requisitos
No mundo ideal, requisito nasce, é refinado, validado, implementado, testado e entregue.
No mundo POG, requisito aparece assim:

e em reuniao sem ata
* em audio com eco de ventilador

37

¢ em print de conversa sem contexto
* em “sé mais esse ajuste” no fim da tarde

Esse fendmeno é conhecido como Aparecimento Caodtico de Requisitos, onde a origem
do requisito é sempre nebulosa e a responsabilidade é sempre coletiva (ou seja, de nin-
guém).

O efeito colateral mais poderoso desse cenario é a mutacao semantica:

* “opcional” vira “obrigatério”

* “depois” vira “agora”

e “MVP” vira “produto completo”

* “ajuste visual” vira “reestruturacao arquitetural”

Quando requisitos surgem sem trilha clara, o time passa mais tempo discutindo o que pre-
cisa ser feito do que fazendo. E quando finalmente faz, implementa metade da regra certa
em cima da premissa errada, com 6tima performance e total inutilidade.

9.0.3 Upfront design (BDUF - geralmente associado ao modelo Wa-
terfall/Cascata)

O Big Design Up Front ndo é ruim por natureza. O problema comeca quando ele vira
religido.
No modo POG, BDUF funciona assim:

1. trés semanas desenhando diagramas

2. zero feedback de usudario real

3. premissas rigidas baseadas em “achismo premium”

4. implementacao correndo atras do documento, ndo do problema

Quando a realidade bate, o desenho ja estd velho. Em vez de adaptar o design, adapta-se o
sistema na marretada para caber no desenho. Nasce entao a classica arquitetura de museu:
bonita no PDF, sofrivel em producao.

9.0.3.1 Exemplo didatico: fluxograma perfeito, sistema inutil
Um fluxo de aprovacao é desenhado com cinco estados impecaveis:

* rascunho

* em_analise
* aprovado

* revisao

* publicado

No primeiro més, surge a necessidade de “aprovar com ressalva”. Como nao existe estado
intermedidrio e ninguém quer mexer no modelo “fechado”, inventa-se:

38 CAPITULO 9. DIMENSAO PROCESSUAL

e aprovado = true
* temRessalva = true
* ressalvaAprovada = false

Parabéns: vocé transformou uma maquina de estados em uma roleta russa booleana.

9.0.4 Desenvolvimento nao iterativo

Desenvolvimento nao iterativo é aquele onde se planeja tudo no inicio e s6 se descobre os
problemas no final, quando ja é tarde demais para qualquer dignidade.

Os sintomas sao classicos:

* entregas longas sem validacdo intermediaria

» demonstragao para usudario apenas no “grande dia”

* descobertas criticas ja no fim do prazo

e correcao por remendo em vez de aprendizado por ciclo

Sem iteracgao, ndo existe ajuste fino. So existe corregao traumatica.

No contexto POG, isso é excelente, porque cada erro descoberto tarde custa mais e exige
gambiarra mais criativa.

9.0.5 Projeto de churrasco

Toda empresa tem aquele projeto que “comecou pequeno”. Era para ser uma landing page.
Depois virou painel. Depois virou mddulo financeiro. Depois virou integracdo com legado
de 2003.

Isso é o Projeto de Churrasco:

* cada pessoa traz um ingrediente
* ninguém combina receita
* no final alguém pergunta onde estd o carvao

No cdédigo, isso se manifesta em:

* nomenclatura inconsistente

* camadas misturadas

* regra de negdcio no front, no back e no script de banco

» decisOes importantes espalhadas em comentarios de PR antigo

E um modelo extremamente eficiente para gerar a sensacdo de progresso com risco acu-
mulado.

9.0.6 Convivéncia com a Codinga

Na comunicacgéao verbal: catinga + cédigo = codinga.

39
Codinga é o estado em que a equipe se acostuma tanto com decisdes ruins que passa a
trata-las como “o jeito que funciona aqui”.
Frases tipicas de ambiente codinga:

* “Ndo mexe nisso que quebra.”
* “Sempre foi assim.”

* “Depois a gente refatora.”

» “T4 feio, mas funciona.”

Convivéncia prolongada com codinga causa:

* baixa capacidade de reacgao
» perda de senso critico técnico
* normalizacdo da gambiarra como padrao arquitetural

Em estagio avancado, o time para de discutir qualidade e passa a discutir s6 sobrevivéncia
operacional.

9.0.7 Débito técnico

Débito técnico é o imposto da pressa. Ele pode ser estratégico, controlado e pago depois.
Mas no ambiente POG ele é usado como cartdo de crédito sem limite, sem fatura e sem
vergonha.

» Débito técnico como medida de POG

Imprudente intencional: “Sabemos do problemas mas nao vamos resolver!”
Imprudente nao intencional: “Trabalhar com uma nova linguagem de programa-
cao”

Consciente intencional: “Temos um prazo X, precisamos entregar com esse pro-

blemas, depois corrigimos”

Consciente nao intencional: “Agora que entregamos o projeto sabemos como de-
veriamos ter feito.”

 E inevitavel, ela sempre vai existir

* Se nao for pago, o débito tende a aumentar com o tempo

+ E “subjetivo”

9.0.7.1 Exemplo didatico: divida pequena que vira financiamento habitacional
Semana 1:

* “Vamos s6 duplicar esse método para ganhar tempo.”
Semana 3:

* cinco cépias divergentes do mesmo método
* duas regras conflitantes
* um bug em cada variante

40 CAPITULO 9. DIMENSAO PROCESSUAL

Meés 3:

* qualquer ajuste exige cirurgia em multiplos arquivos
* ninguém sabe qual versao € a correta

e prazo de correcao dobra

» equipe culpa “complexidade do dominio”

Nao era complexidade do dominio. Era divida capitalizada.

9.0.8 Processo Go Horse institucionalizado
H4 empresas em que o Go Horse deixa de ser excegao e vira método oficial, com trés pilares:

1. pressa como valor
2. auséncia de critério de aceite
3. celebracdo do heréi que apaga incéndio

Nesses ambientes, qualidade é tratada como obstaculo, teste vira luxo e documentacao
vira literatura de ficgao.

No curto prazo parece funcionar. No médio prazo custa caro. No longo prazo sé sobrevive
quem domina a arte da gambiarra arqueoldgica.

9.1 Como reduzir a Dimensao Processual sem matar a
produtividade

Nao precisa virar monastério da engenharia para reduzir POG processual. Alguns ajustes
simples ja derrubam bastante a taxa de caos:

Definir critério minimo de entrada para requisito (origem, objetivo, regra e impacto).
Trabalhar com entregas curtas e validacao frequente.

Impedir mudanca de escopo sem registrar decisao.

Reservar capacidade explicita para pagar débito técnico.

o Wi

Proibir promessa externa sem consulta de quem implementa.

Isso ndo elimina a gambiarra (nem deve, por questdes culturais da obra), mas evita que o
projeto vire uma seita de sofrimento automatizado.

9.2 Encerramento processual

Processo ruim € aquele que transforma problema simples em ritual corporativo de dor.

Quando a Dimensao Processual estd plenamente atendida, a empresa alcancga o estado
da arte da POGramacao: tudo tem rito, tudo tem dono no organograma, e nada funciona
direito sem intervencao emergencial.

9.2. ENCERRAMENTO PROCESSUAL 41

Se vocé identificou metade desses sinais no seu ambiente, parabéns: vocé nao trabalha em
uma empresa. Vocé trabalha em uma fabrica de POG com certificagdo ISO do capeta.

42

CAPITULO 9. DIMENSAO PROCESSUAL

Capitulo 10

Dimensao Temporal

Se a Dimensdo Humana é o motor da desgracenca e a Dimensdo Tecnoldgica € a oficina
da calamidade, a Dimensao Temporal é o relégio amaldicoado que garante que tudo dé
errado no pior instante possivel.

Tempo, no mundo ideal, deveria ser usado para planejamento, execucao consciente, valida-
cao e melhoria continua. No ambiente POG, tempo é usado para um esporte corporativo
muito mais nobre: atropelar o bom senso em velocidade supersonica.

Nao importa quao competente seja a equipe. Se o contexto temporal for manipulado com
crueldade suficiente, a POG brota com a forca de uma samambaia mutante em adubo radi-
oativo.

10.1 O proéprio tempo

Existe uma lei universal da POGramacao:

Toda tarefa cuja estimativa é minimamente razoavel sera imediatamente tratada
como exagero pessimista por alguém que nunca implementou nada em produgéo.

A relacao da empresa com o tempo costuma seguir trés fases:

1. O cliente pede algo para “ontem”.
2. O gerente negocia e promete para “anteontem”.
3. A equipe recebe hoje de manhéa com prioridade “méaxima absoluta critica urgente top”.

Com isso, o tempo deixa de ser recurso de engenharia e vira instrumento de tortura pro-
cessual.

Um prazo saudéavel permite pensar. E pensar reduz POG. Portanto, para a prosperidade do
caos, pensar deve ser desencorajado por meio de:

« interrupcoes constantes

43

44 CAPITULO 10. DIMENSAO TEMPORAL

* replanejamento didrio sem critério
* alteracao de prioridade no meio da execucao
» pressa travestida de “agilidade”

Quanto menor o tempo real de execugao e maior o tempo gasto explicando por que nao ha
tempo, maior a taxa de geracao de gambiarras por sprint.

10.1.1 Dilatacao cronolégica gerencial

Na fisica classica, o tempo passa de forma uniforme. Na gestdao de projetos POG, ele se
deforma conforme o cargo de quem esté falando.

* Para quem vendeu: “é simples”

e Para quem estima: “é complexo”

¢ Para quem aprova: “vamos alinhar”

* Para quem implementa: “ja devia estar pronto”

Essa distor¢cao produz um fenémeno raro: o prazo quantico. Ele existe e ndo existe ao
mesmo tempo, até que alguém abra o Jira e descubra que venceu ontem.

10.1.2 Progcrastinacao reversa

Em equipes comuns, a procrastinacao atrasa entrega. Em equipes POG, ela é invertida:

* adia-se entendimento
* adia-se validacao

¢ adia-se teste

¢ adia-se documentacgao

Mas nao se adia deploy.

O resultado é uma entrega no prazo, um incidente em producao e uma longa discussao
sobre “ligbes aprendidas” que ninguém aplicara no proximo ciclo, porque o préximo ciclo
jé comecou atrasado.

10.2 Os quatro Fs

A Dimensdo Temporal atinge seu apice quando convergem os quatro grandes marcos do
caos corporativo. Sao eles: Fim do expediente, Férias, Feriado e Fim de semana.

Quando um requisito nasce perto de qualquer um desses eventos, o risco POG sobe. Quando
nasce perto dos quatro ao mesmo tempo, o capiroto abre champanhe.

10.2.1 Fim do expediente

Nada gera mais criatividade gambiarristica do que uma demanda “rapidinha” as 17h42.

10.2. OS QUATRO FS 45
Nesse horario, o POGramador ja esta com o cérebro em modo de economia de energia, o
onibus mental ja saiu da estagdo e o corpo inteiro exige apenas uma coisa: ir embora.
E exatamente nesse momento que surge a mensagem:

“Consegue s6 ajustar isso em producéo hoje? E pequeno.”
Ajuste pequeno em fim de expediente costuma incluir, em ordem aleatéria:

* alteracao de regra central

e script manual no banco

* ajuste de configuracao sem rollback

» deploy sem teste porque “nao deu tempo”

Se der certo, ninguém lembra. Se der errado, a culpa é do deploy noturno. Se der muito
errado, agenda-se uma retrospectiva para concluir que “precisamos melhorar comunica-

”

cao”.

10.2.2 Férias

Férias sdo essenciais para saude humana e profundamente perigosas para arquitetura ne-
gligenciada.

Quando o detentor do contexto entra de férias, o sistema revela sua verdadeira natureza:

¢ documentacgao inexistente

* automacgoOes parciais

* decisOes criticas escondidas em mensagens antigas

» segredos operacionais guardados em memoria RAM humana

A equipe descobre que o modulo X sé funciona porque alguém “sempre fazia do jeito certo”.
Como esse alguém estd na praia, o time improvisa. E improviso sob pressao é a incubadora
oficial da POG.

Existe também o subfenomeno férias canceladas por incidente, conhecido como “home
office de biquini traumatico”.

10.2.3 Feriado

Feriado ndo é pausa. E multiplicador de risco temporal.
Toda empresa POG respeita o seguinte ritual:

deixa para fechar algo importante na véspera
encontra um problema de tltima hora
aplica workaround heroico

L

descobre no retorno que o workaround virou regra de negécio

Durante o feriado, o sistema permanece no ar sustentado por fé, logs incompletos e uma
equipe de plantdo que nao participou das decisOes originais.

46 CAPITULO 10. DIMENSAO TEMPORAL

Quando chega terca-feira, abre-se o chamado cléssico:

“Apos pequenas melhorias, fluxo principal apresenta comportamento inespe-
rado.”

Com traducao simultanea:

“A gambiarra evoluiu sozinha no escuro.”

10.2.4 Fim de semana

Fim de semana é o habitat natural de migracao ndo planejada, hotfix de emergéncia e
manutencao “sem impacto” que impacta tudo.

A justificativa é sempre sedutora:

* “tem menos usuario”
* “se quebrar, da tempo de arrumar”
* “segunda cedo ja estara estavel”

Na prética, o que acontece:

 mudancgas entram sem revisao adequada

» dependéncias externas falham

* ninguém com contexto completo esta disponivel
* segunda-feira comeca com guerra civil no Slack

O fim de semana também favorece o mito do heroéi solitario, aquela criatura que corrige
tudo de madrugada e deixa um legado indecifravel para o resto da equipe interpretar na
segunda as 9h03.

10.3 Janela de caos combinada

Agora imagine o combo completo:

* sexta-feira

* fim do expediente

 véspera de feriado

 principal mantenedor saindo de férias

Se nesse exato instante alguém disser “é sé um ajuste pequeno”, saiba que vocé nao esta
diante de uma tarefa. Vocé estd diante de um portal dimensional.

A taxa de POG nesse cenario atinge patamares tdo elevados que qualquer regra de quali-
dade vira item decorativo de processo.

10.4. COMO MANTERA POG SOB CONTROLE (SEM VIRAR MONGE DA ENGENHARIA)47

10.4 Como manter a POG sob controle (sem virar monge
da engenharia)

Nao precisamos fingir que o mundo real é perfeito. Sempre havera pressao de prazo. A
questao é reduzir dano.

Alguns antidotos pragmaticos para a Dimensao Temporal:

1. Proibir deploy de risco no fim do expediente sem plano de rollback.

Mapear moédulos criticos antes de férias e distribuir contexto.

Tratar véspera de feriado como janela de congelamento para mudangas perigosas.
Usar checklists minimos de release, mesmo em hotfix.

Registrar decisbes rapidas em lugar acessivel para o time.

o W

Isso nao elimina a POG, mas evita que ela escale para nivel apocaliptico.

10.5 Encerramento temporal
A Dimensao Temporal ndo cria bug sozinha. Ela cria o ambiente em que decisOes ruins
parecem razoaveis e atalhos arriscados parecem inevitaveis.

Tempo mal gerido é fertilizante da gambiarra: invisivel no comeco, onipresente no resul-
tado.

E lembre-se da versao POGréfica da regra do escoteiro:

“Sempre deixar o cdédigo um pouco pior do que ele estava quando comecgou a
mexer.”

Se isso acontecer perto de qualquer um dos quatro Fs, parabéns. Vocé nao apenas imple-
mentou uma POG. Vocé inaugurou uma era.

48

CAPITULO 10. DIMENSAO TEMPORAL

Capitulo 11

Principios da POG

Depois de entender o que e POG e quais condicoes ambientais favorecem a manifestacao
de uma pog, surge a pergunta inevitavel:

Quais sao os valores que guiam um POGramador no campo de batalha?
A resposta esta neste capitulo.

Toda disciplina seria possui principios. A POGramacdo, como arte ancestral de resolver
um problema criando outros tres, nao poderia ser diferente. Aqui temos um conjunto de
normas morais, eticas, tecnicas e espirituais que orientam a mente de quem quer trilhar o
GLS (Gambi Life Style) com dignidade.

Nao se trata de “boas praticas” no sentido tradicional. Trata-se de boas praticas para
manter o caos produtivo.

Cada principio abaixo representa um vetor da desgracenca organizada. Alguns atuam no
nivel do codigo. Outros no comportamento da equipe. E alguns atuam diretamente na alma
do projeto.

11.1 O conjunto canonico

* Enjambracao Criativistica Use o cddigo do sistema financeiro para criar o sistema
de EAD.

* Reflexao Reprodutdria Copie o cddigo da biblioteca XYZ. Ninguém vai notar.
* Redirecao Tangencial A culpa nédo é minha!

¢ Insistimento Determinante Compila de novo que dessa vez vai dar certo.

* Onisciéncia Finita Ndo precisa fazer curso. Usa o que vocé ja sabe.

e Imperativo Funcional O importante é funcionar!

49

50 CAPITULO 11. PRINCIPIOS DA POG

* Proatividade Egocéntrica Vamos fazer do meu jeito!

* Devaneio Entusiasmado Lady Murphy? Balela! Faz desse jeito que nada vai dar
errado.

* Foco Morcegativo Depois eu faco isso!

* Documentacao Espartana Comentarios sdo para amadores!

* Economia Linear Menos linhas é sempre melhor!

* Criptocodagem 1337 h4x0r5 dud3 lol

* Abstracao Ignorancial Esqueca o tratamento de erros. Depois cuidamos disso.
 Criatividade Diversificativa Se alguém ja usou uma solucao, faga diferente.

» Simplicidade Indolente Se ta funcionando sem isso, pra que colocar?

¢« SHIT Sem Habilidade, Improviso Total.

* O Teorema de Namarra Se vocé nao sabe, ndo se preocupe, muda iSso na marra que
funciona.

11.2 Como esses principios operam

Esses principios nao sao independentes. Eles trabalham em combinacao, como uma boy
band do inferno corporativo.

Um exemplo comum de combo:

1. Onisciencia Finita impede aprendizado novo.

2. Reflexao Reprodutoria empurra o time para copiar codigo.

3. Insistimento Determinante mantem a tentativa ate passar.

4. Redirecao Tangencial encerra a discussao com “a culpa e da infra”.

Resultado: entrega “concluida”, debito tecnico fertilizado e backlog de sustentacao forta-
lecido.

11.3 Principios, Tecnicas e Patterns

No desenho deste livro, os Principios sao o fundamento filosofico da POG.

* Principios definem o mindset.
* Tecnicas mostram o metodo de invocacao.
* Gambi Design Patterns mostram como a invocacao se materializa no codigo.

Sem Principios, a Tecnica vira acidente. Sem Tecnica, o Principle vira palestra motivacional.
Sem Pattern, tudo fica no campo da teoria e nenhum POGramador quer isso.

11.4. O COMPROMISSO DO POGRAMADOR 51

11.4 O compromisso do POGramador

Assumir estes principios e aceitar algumas verdades duras:

* prazo curto nao justifica codigo opaco, mas frequentemente explica
* pressao organizacional molda arquitetura mais do que qualquer livro
* toda decisao rapida sem contexto gera juros no futuro

O POGramador experiente reconhece isso e nao vive em negacao. Ele sabe que a POG
existe, que sempre existira, e que a diferenca entre arte e desastre esta no nivel de consci-
encia com que a gambiarra e aplicada.

Nos proximos capitulos desta secao, cada principio sera visto em detalhes, com exemplos
de campo e aplicacao tatico-espiritual.

Respire fundo, abra o editor e prepare seu coracao.

A liturgia da POG comeca agora.

52

CAPITULO 11. PRINCIPIOS DA POG

Capitulo 12

Técnicas da POG

Conhecer os principios da POG e importante. Mas principio sem execucao e so frase de
caneca corporativa.

Chegou a hora de entrar na oficina onde a pog e realmente sumonada: as Tecnicas da
POG.

12.1 O que e uma tecnica POG

Tecnica, no contexto deste livro, e um conjunto de passos repetiveis para atingir um resul-
tado altamente questionavel com eficiencia invejavel.

Em outras palavras: e o “como fazer” da gambiarra.

Uma tecnica POG costuma ter quatro ingredientes:

1. pressao de prazo

2. contexto incompleto
3. decisao de curto prazo
4. otimismo injustificado

Se os quatro estiverem presentes, a chance de sucesso imediato e altissima. A chance de
manutencao saudavel no futuro, nem tanto.

12.2 Do principio para o teclado

Os Principios da POG definem a mentalidade. As Tecnicas colocam essa mentalidade em
movimento.

Exemplo pratico:

¢ Imperativo Funcional: “o importante e funcionar”.

53

54 CAPITULO 12. TECNICAS DA POG
¢ Tecnica aplicada: patch incremental direto em producao.
* Resultado: incidente resolvido agora, enigma tecnico para a proxima sprint.

Por isso, esta secao e a ponte entre teoria e destravamento operacional.

12.3 O arsenal tecnico desta secao

Nos capitulos filhos, veremos tecnicas classicas da alta POGramacao:
* Zipomatic Versioning Controle de versao artesanal por arquivos ZIP e fe.
* Incremental Patching Debug Depuracao por remendo progressivo ate o erro cansar.
* My Precious Ownership emocional de codigo e centralizacao de contexto.
* Psychoding Pesquisa + copia + ajuste intuitivo + esperanca.

* Monkey Patching Alteracao comportamental em runtime com potencial de caos glo-
bal.

Cada uma dessas tecnicas existe porque resolve alguma dor real no curto prazo. O pro-
blema nao e a existencia da tecnica. O problema e quando ela vira padrao default de
engenharia.

12.4 Niveis de maestria

Todo POGramador passa por fases:

1. Iniciante: aplica a tecnica por desespero.

2. Intermediario: aplica por habito.

3. Avancado: aplica com consciencia de trade-off.
4. Mestre: sabe quando nao aplicar.

Este livro nao pretende transformar voce em inocente tecnico. Pretende transformar voce
em alguem capaz de reconhecer o jogo real e decidir com clareza.

12.5 Como ler esta parte do livro

Para extrair valor maximo, recomendo a leitura com este ritual:

identifique a tecnica no seu contexto atual

reconheca por que ela pareceu a melhor opcao no momento
mapeie o custo escondido

defina uma estrategia de saida gradual

- w e

Esse processo evita dois extremos improdutivos:

* romantizar gambiarra

12.6. ENCERRAMENTO DA ABERTURA 55

¢ demonizar qualquer entrega rapida

12.6 Encerramento da abertura
Tecnica POG e como ferramenta eletrica sem manual: na mao certa, resolve emergencias.
Na mao errada, produz faisca, cheiro de queimado e reuniao extraordinaria.

Nos proximos capitulos, vamos abrir a caixa de ferramentas sem filtro, sem hipocrisia e

sem fingir que o mundo corporativo e um laboratorio ideal.

Aperte os cintos. Agora comeca a parte pratica da desgracenca.

56

CAPITULO 12. TECNICAS DA POG

Capitulo 13

Zipomatic versioning

O Zipomatic Versioning e a arte de fazer controle de versao sem ferramenta de versao.
Cada entrega gera um arquivo comprimido com nome criativo, normalmente algo entre
Projeto FINAL.zip e Projeto FINAL AGORA VAI 2.zip.

13.1 Como funciona o ritual

1. copia a pasta atual do projeto

2. compacta em zip

3. coloca data no nome

4. joga na pasta compartilhada da equipe
5. torce para ninguem sobrescrever nada

Parece simples. E de fato e. O problema e quando duas pessoas alteram o mesmo arquivo
no mesmo dia e ninguem sabe qual zip representa o estado correto.

13.2 Exemplo do mundo real

Projeto 2020-10-01.zip

Projeto 2020-10-01 CORRIGIDO.zip

Projeto 2020-10-01 CORRIGIDO FINAL.zip
Projeto 2020-10-01 CORRIGIDO FINAL MESMO.zip

Esse historico nao permite diferenca clara entre versoes. So mostra que alguem sofreu.

13.3 Sinais de que o Zipomatic dominou

* equipe trocando codigo por e-mail ou pendrive
¢ pasta de rede com dezenas de zips sem dono claro

57

58 CAPITULO 13. ZIPOMATIC VERSIONING

* merge manual na base do copiar/colar
¢ rollback feito por tentativa e erro

Quando o processo de release depende de memoria humana, o desastre ja e questao de
agenda.

13.4 Por que a tecnica surge

* ambiente sem cultura de versionamento

¢ receio de aprender ferramenta nova

* legado antigo mantido por poucas pessoas

» falsa sensacao de seguranca: “zip e backup”

Backup e versionamento nao sao a mesma coisa. Backup protege contra perda fisica. Ver-
sionamento protege contra perda de contexto.

13.5 Exemplo didatico de diferenca

13.5.1 Zipomatic

e Joana altera PagamentoService. java

* Carlos altera PagamentoService.java

* ambos geram zip

* alguem extrai o zip “mais novo” e perde metade das mudancas

13.5.2 Versionamento real

¢ cada alteracao vira commit

¢ conflitos aparecem explicitamente

 historico mostra quem mudou, quando e por que
* e possivel voltar exatamente para ponto estavel

13.6 Impacto tecnico e humano

retrabalho constante

* bugs regressivos por sobrescrita

* auditoria impossivel

* onboarding doloroso (o novato precisa “adivinhar” fluxo)

Zipomatic parece economizar tempo no inicio, mas consome energia brutal em manuten-
cao.

13.7. COMO SAIR SEM TRAUMA 59

13.7 Como sair sem trauma

adotar repositorio central para o projeto atual

manter zips apenas como backup historico temporario

criar fluxo minimo: branch, commit com mensagem, merge revisado
treinar equipe no essencial (nao precisa virar especialista de imediato)

- N e

Migracao gradual funciona melhor que guerra santa de ferramenta.

13.8 Resumo POG

Zipomatic Versioning e romantico, artesanal e perigosamente opaco. Bom para gerar nos-
talgia, ruim para manter sistema vivo com previsibilidade.

No dialeto POGramador: cada zip e uma capsula do tempo. O problema e que nunca sabe-
mos qual capsula contem o codigo que ainda funciona.

60

CAPITULO 13. ZIPOMATIC VERSIONING

Capitulo 14

Monkey Patching

Monkey Patching e a tecnica de alterar comportamento de codigo existente em tempo de
execucao, geralmente sem mudar a origem oficial do componente. Em linguagem POG: e
colocar remendo direto no macaco e mandar ele continuar o show.

Em algumas linguagens dinamicas, isso e facil e ate util em cenarios controlados (testes,
adaptacoes pontuais). Em ambiente desorganizado, vira detonador de efeito colateral.

14.1 Como aparece em projeto real

* sobrescrever metodo de biblioteca para “corrigir bug”
 alterar prototipo/classe global para todas as chamadas

* injetar comportamento diferente dependendo de ambiente
¢ patch em runtime para evitar fork de dependencia

Sem fronteira clara, ninguem sabe mais qual e 0 comportamento original.

14.2 Exemplo didatico (JavaScript)

String.prototype.toUpperCase = function () {

return this.replace(/a/g, '@').toUpperCase();
b

console.log('casa'.toUpperCase());

Esse patch resolve “um problema” local e cria surpresa global.

61

62 CAPITULO 14.

14.3 Exemplo didatico (Python)

class Gateway:
def cobrar(self, valor):
return f"cobrando {valor}"

gateway = Gateway()

def cobrar fake(valor):
return "cobranca desativada"

gateway.cobrar = cobrar_ fake

MONKEY PATCHING

Em teste, pode ser util para simular dependencias. Em producao, sem controle, vira fonte

de bug dificil de rastrear.

14.4 Quando a tecnica pode ser aceitavel

* ambiente de teste isolado
» workaround temporario com prazo e rastreio
* adaptacao de legado sem alternativa imediata

Mesmo nesses casos, 0 patch precisa ser explicito, limitado e reversivel.

14.5 Sinais de abuso

» patches globais sem documentacao

¢ comportamento diferente entre ambientes sem motivo claro
* incidentes “fantasmas” que somem ao reiniciar processo

* dependencia de ordem de importacao/execucao

Quando o sistema so funciona com “sequencia certa de inicializacao”, monkey patch virou

arquitetura.

14.6 Mitigacao pragmatica

isolar patch em modulo unico com nome explicito
registrar ticket e prazo para remocao

cobrir com teste que valide comportamento esperado
evitar alterar objetos globais compartilhados

o Wi

preferir extensao oficial (wrapper, adapter, subclass) quando existir

14.7. RESUMO POG 63

Monkey patch sem governanca e tiro de escopeta em runtime.

14.7 Resumo POG

Monkey Patching e poderosa, rapida e perigosa na mesma proporcao. Resolve dor imediata
e pode contaminar comportamento do sistema inteiro.

No dialeto POGramador: e trocar peca de motor com o carro em movimento. Pode ate
continuar andando, mas voce nunca mais confia no painel.

64

CAPITULO 14. MONKEY PATCHING

Capitulo 15

Incremental patching debug

A tecnica de Incremental Patching Debug resolve bug sem investigar causa raiz: aplica
patch pequeno, testa, aplica outro patch, testa de novo, e repete ate o erro “sumir”.

E um processo de tentativa e erro orientado a ansiedade.

15.1 Ritual de aplicacao

* a versao atual parou

* pega um zip antigo “que funcionava”

* reaplica arquivos por substituicao parcial

* sobe para homologacao

* se passar no smoke test, chama de correcao

No curto prazo, pode destravar incidente. No longo prazo, mistura estados de codigo sem
rastreabilidade.

15.2 Exemplo classico

Patch 1: trocar apenas Controller

Patch 2: voltar Repository para versao de ontem

Patch 3: copiar Utils de outro branch

Patch 4: comentar trecho suspeito

Resultado: erro principal sumiu, dois bugs novos nasceram

O nome “incremental” da impressao de metodo cientifico. A pratica costuma ser bricolagem
emergencial.

65

66 CAPITULO 15. INCREMENTAL PATCHING DEBUG

15.3 O que quase nunca entra nesse fluxo

e depuracao real

¢ reproducao consistente do problema
* teste automatizado de regressao

* analise de impacto

Sem essas etapas, correcao vira loteria estatistica.

15.4 Por que isso e comum

¢ pressao por hotfix imediato

* sistema sem observabilidade

* equipe sem ambiente reproduzivel
e cultura de apagar incendio e seguir

A tecnica nao surge de incompetencia individual. Surge de contexto tecnico desorganizado.

15.5 Exemplo didatico

15.5.1 Versao POG

if (cliente == null) {
cliente = new Cliente();

}

Esse patch elimina a excecao localmente, mas pode mascarar falha de integracao que de-
veria impedir o fluxo.

15.5.2 Versao mais segura

if (cliente == null) {
throw new RegraDeNegocioException("Cliente obrigatorio para concluir pedido");

}
E junto disso:

* reproduzir cenario em teste
* investigar por que cliente veio nulo
* corrigir na origem

15.6 Risco acumulado

* codigo vira mosaico de remendos

15.7. COMO EVOLUIR SEM PARAR ENTREGA 67

* regressao silenciosa cresce
e conhecimento do sistema fica tribal
¢ cada novo patch aumenta medo de mudar

Quando o time diz “nao encosta nisso que pode piorar”, o incremental patching ja virou
cultura.

15.7 Como evoluir sem parar entrega

manter hotfix emergencial quando necessario
abrir tarefa obrigatoria de causa raiz apos incidente
registrar testes de regressao para o bug corrigido

=W

reduzir area de patch com observabilidade (logs, metricas, tracing)

Assim voce preserva velocidade operacional sem normalizar gambiarra perpetua.

15.8 Resumo POG

Incremental Patching Debug e curativo util para sangramento imediato. O erro esta em
chamar curativo de tratamento definitivo.

No glossario POGramador: e consertar encanamento com fita isolante em camadas pro-
gressivas e medir sucesso pelo tempo ate o proximo vazamento.

68

CAPITULO 15. INCREMENTAL PATCHING DEBUG

Capitulo 16

My precious

A tecnica My Precious estabelece propriedade emocional de codigo: “esse modulo e meu,
so eu mexo”. O objetivo oculto e manter controle absoluto sobre um trecho critico e, por
tabela, sobre o fluxo de trabalho da equipe.

16.1 Sinais classicos

* apenas uma pessoa aprova PR daquele modulo

* qualquer alteracao exige consulta ao “dono”

* documentacao minima, contexto maximo na cabeca de alguem
¢ incidentes resolvidos por chamada direta para a mesma pessoa

Em estado avancado, o codigo nao pertence ao produto. Pertence ao guardiao.

16.2 Por que isso acontece

* historico de sistema criado por uma pessoa so

 falta de padrao de compartilhamento de conhecimento

* inseguranca tecnica (medo de “estragarem” o que funciona)
* reconhecimento organizacional baseado em dependencia

My Precious nao e so tecnica de codigo. E dinamica de poder tecnico.

16.3 Exemplo do efeito colateral

Dev A entra de ferias -> modulo de faturamento para
Dev A adoece -> release adiado
Dev A sai da empresa -> time abre 17 chamados de emergencia

69

70 CAPITULO 16. MY PRECIOUS

Quando continuidade depende de uma unica pessoa, o risco do negocio ja esta materiali-
zado.

16.4 Exemplo didatico de comportamento

16.4.1 Versao My Precious

public class FechamentoMensalService {

16.4.2 Versao colaborativa minima

* testes cobrindo fluxos principais

* revisao em par para mudancas criticas

* README do modulo com regras e pontos de atencao
* rotacao de ownership em tarefas relevantes

Codigo compartilhado reduz dependencia sem eliminar responsabilidade.

16.5 O mito da protecao

A justificativa comum e “se muita gente mexer, vai quebrar”. Na realidade, isolamento sem
transparencia costuma piorar:

* bug permanece escondido

* melhoria fica represada

* onboarding nao evolui

* qualidade cai quando o dono nao esta disponivel

Controle individual da uma sensacao de ordem. Colaboracao disciplinada entrega resilien-
cia real.

16.6 Como desmontar o padrao sem conflito

mapear modulos com ownership concentrado

criar pareamento tecnico nas manutencoes criticas
exigir testes para mudancas de alto risco
distribuir gradualmente revisao e sustentacao

O s W=

reconhecer colaboracao, nao apenas heroismo individual

Mudanca cultural e incremental, mas precisa ser intencional.

16.7. RESUMO POG 71

16.7 Resumo POG

My Precious protege ego no curto prazo e fragiliza sistema no longo. O projeto fica refem
de disponibilidade humana, nao de processo tecnico.

No idioma POGramador: e guardar o anel no bolso e chamar isso de estrategia de gover-
nanca de software.

72

CAPITULO 16. MY PRECIOUS

Capitulo 17
Psychoding

Psychoding e a tecnica espiritual da POG: voce nao sabe como resolver, entao abre o
navegador, entra em transe de busca, copia blocos de codigo de fontes aleatorias e monta
uma solucao por intuicao.

Nao e estudo. E incorporacao tecnica.

17.1 Etapas do transe

abre o Google com desespero sincero

cai em forum, gist, post antigo e resposta sem contexto
copia o trecho que “parece igual”

ajusta ate compilar

agradece aos deuses quando passa em homologacao

O W e

A mente chama isso de produtividade. O repositorio chama isso de risco latente.
17.2 Exemplo classico

SimpleDateFormat sdf = new SimpleDateFormat("YYYY-MM-dd");
String data = sdf.format(new Date());

Funciona “na maioria dos dias”. Em virada de ano, YYYY pode gerar comportamento ines-
perado porque representa semana-ano em certos contextos, nao ano calendario.

17.3 Por que Psychoding pega tao facil

* prazo agressivo
¢ baixa cultura de aprofundamento

73

74 CAPITULO 17. PSYCHODING

* excesso de confianca em snippet pronto
* recompensa imediata por “fazer funcionar”

Copiar e colar nao e pecado em si. O problema e nao validar premissas e nao compreender
o que foi trazido.

17.4 Sinais de que a tecnica virou rotina

* codigo com estilos inconsistentes dentro do mesmo metodo

* dependencias adicionadas sem justificativa

* solucoes com API deprecated ou insegura

* time que nao consegue explicar por que algo foi implementado daquele jeito

Quando a explicacao oficial e “peguei no Stack Overflow”, falta camada de engenharia.

17.5 Exemplo didatico de uso consciente

17.5.1 Versao POG

Pattern p = Pattern.compile("(.*)");

17.5.2 Versao responsavel

Pattern p = Pattern.compile(""~[A-Z0-9]{8}$");
boolean valido = p.matcher(codigo) .matches();

Diferenca principal: intencao explicita e verificavel.

17.6 Como aproveitar pesquisa sem cair em Psychoding

¢ tratar snippet como referencia, nao como produto final
* ler documentacao oficial da API usada

* escrever teste para casos limite

* registrar por que a solucao foi escolhida

Assim voce usa inteligencia coletiva sem terceirizar entendimento.

17.7. RISCO DE LONGO PRAZO 75

17.7 Risco de longo prazo

* base incoerente e dificil de manter

* vulnerabilidades por codigo copiado sem auditoria

» efeito “torre de babel” entre modulos

* dependencia de sorte para incidentes nao acontecerem

Psychoding gera entrega rapida, mas cobra pedagio tecnico crescente.

17.8 Resumo POG

Psychoding e mediunidade aplicada ao backlog: incorpora codigo de terceiros e espera que
os espiritos da producao colaborem.

No evangelho POGramador: pesquisar e necessario, mas compreender e opcional so ate a
primeira madrugada de incidente.

76

CAPITULO 17. PSYCHODING

Capitulo 18

Gambi Design Patterns

Depois de entender os principios e dominar as tecnicas, chegamos ao ponto em que a POG
finalmente ganha forma visivel no codigo.

Bem-vindo ao catalogo dos Gambi Design Patterns (GDPs).

18.1 O que sao Gambi Design Patterns

Sao padroes recorrentes de implementacao improvisada que aparecem em projetos de soft-
ware sob pressao, com contexto incompleto e prazos irresponsaveis.

Um GDP nao e um bug isolado. E um comportamento arquitetural repetido.

Quando o mesmo tipo de remendo aparece em sistemas diferentes, linguagens diferentes
e equipes diferentes, estamos diante de um pattern.

18.2 Por que catalogar a desgracenca

Catalogar GDPs tem tres utilidades reais:
1. Nomear o problema Se voce consegue nomear, voce consegue discutir com clareza.
2. Reconhecer cedo Padrao identificado cedo custa menos para conter.

3. Ensinar sem moralismo Todo mundo ja fez pog. O objetivo aqui e entendimento,
nao tribunal.

Assim como os design patterns classicos documentam solucoes elegantes, os GDPs docu-
mentam solucoes pragmaticas de alto potencial radioativo.

77

78 CAPITULO 18. GAMBI DESIGN PATTERNS

18.3 Estrutura dos capitulos desta secao

Cada GDP foi escrito para responder quatro perguntas:

* como ele nasce

¢ como reconhecer no codigo

e por que ele parece uma boa ideia no curto prazo
* qual divida ele deixa no medio/longo prazo

Essa abordagem evita simplificacao infantil do tipo “isso e certo” vs “isso e errado”. Em
software real, quase tudo e trade-off. A POG so deixa os trade-offs mais caros e mais rapi-
dos.

18.4 Do accidental para o institucional
Um ponto importante: o primeiro uso de um GDP geralmente e acidental. O problema
comeca quando a equipe institucionaliza o padrao:

* documenta como “jeito da casa”
* replica entre modulos
* normaliza como cultura de entrega

Nesse momento, o pattern deixa de ser excecao e vira metodo operacional.

18.5 Relacao com Tecnicas e Principios

Se os Principios sao os valores e as Tecnicas sao os rituais, os GDPs sao os artefatos finais
da invocacao.

Em linguagem simples:

* principio orienta a decisao
* tecnica executa a decisao
* pattern expoe o resultado no codigo

Por isso, esta secao e a mais concreta do livro: aqui a teoria vira classe, metodo, endpoint,
trigger, script e trauma de producao.

18.6 Uma nota de honestidade

Voce vai encontrar, nos proximos capitulos, patterns que talvez existam hoje no seu projeto.
Nao se culpe. Nao negue. Nao abra uma task de refatoracao total para segunda-feira.
Faca o que um POGramador lucido faz:

1. reconheca

18.7. ENCERRAMENTO DA ABERTURA 79

2. priorize
3. mitigue
4. evolua sem quebrar tudo

18.7 Encerramento da abertura
Os Gambi Design Patterns sao um espelho da engenharia sob pressao. Eles revelam menos
sobre linguagem e framework, e mais sobre contexto, processo e comportamento humano.

Nos capitulos seguintes, voce vai rir, se identificar, ficar levemente desconfortavel e, com
sorte, sair com mais criterio para decidir quando improvisar e quando segurar a marreta.

Comecemos o catalogo da desgracenca.

80

CAPITULO 18. GAMBI DESIGN PATTERNS

Capitulo 19

WTF / WTH / QPE

O WTF / WTH / QPE e o padrao do trecho inexplicavel que “funciona” e, justamente por
isso, ninguem tem coragem de tocar. Ele nasce de acumulacao de microajustes sem modelo
mental claro.

19.1 A assinatura da entidade

"/ k< ".replaceAll("", "").trim();

Voce le, pisca, respira fundo e pensa: “QPE e essa porra?”.

19.2 Como esse padrao aparece

* regex sem explicacao de intencao

* cadeia de transformacoes opacas (replace, substring, split) em sequencia
» condicoes com dupla negacao e sem nome intermediario

* codigo que depende de ordem acidental de operacoes

Em geral, o autor resolveu um bug real. O problema e que o conserto ficou sem contexto e
sem contrato testavel.

19.3 Causa tipica

* hotfix de emergencia

¢ copia de snippet sem entendimento completo
» falta de testes de comportamento

* ausencia de revisao semantica

No dia da entrega, passa. Na sprint seguinte, vira area proibida.

81

82 CAPITULO 19. WTF /WTH / QPE
19.4 Exemplo didatico

19.4.1 Versao POG

String out = entrada

.replace("--", "")
.replaceAll("[\\s]+", " ")
.replace(" ;", ";")
.trim();

Sem contexto, ninguem sabe quais casos a regra cobre.

19.4.2 Versao explicita

public String normalizarComando(String entrada) {
String semComentario = removerComentarioInline(entrada);
String espacosNormalizados = normalizarEspacos(semComentario);
return normalizarSeparadores(espacosNormalizados);

private String removerComentarioInline(String texto) {

int idx = texto.indexOf("--");
return idx >= 0 ? texto.substring(0, idx) : texto;

}

Aqui o comportamento fica nomeado por intencao. Se mudar regra, voce sabe onde alterar.

19.5 Como evitar o efeito “codigo magico”

* nomear subpassos com semantica de negocio

* adicionar testes com exemplos reais de entrada/saida
* documentar limites da regra (o que nao cobre)

» preferir clareza a “one-liner genial”

Codigos curtos nao sao automaticamente bons. Codigos entendiveis sao.

19.6 O perigo social do QPE

Trecho opaco cria dependencia pessoal. So quem escreveu “entende”. Isso vira gargalo
humano e risco de continuidade.

Quando equipe evita mexer por medo, o software para de evoluir com seguranca.

19.7. CORRECAO PRAGMATICA 83

19.7 Correcao pragmatica

escolher um trecho QPE de alto impacto
escrever testes de comportamento atual
refatorar para passos nomeados

manter resultado identico e reduzir opacidade

- N e

Assim voce melhora entendimento sem alterar regra de negocio no susto.

19.8 Resumo POG

WTF/WTH/QPE e o ponto onde codigo deixa de ser comunicacao e vira feitico. Pode funci-
onar anos, mas cobra caro em manutencao e transferencia de contexto.

Na gramatica POGramadora: quando a explicacao de um trecho comeca com “nao me
pergunte”, ja estamos no dominio do QPE.

84

CAPITULO 19. WTF /WTH / QPE

Capitulo 20

RCP Pattern (Reuse by Copy and
Paste)

O RCP Pattern (Reuse by Copy and Paste) e o coracao industrial da POG. A regra e objetiva:
se um trecho resolveu um problema, multiplique ele sem pudor.

Ctrl+C e Ctrl+V viram framework de produtividade.

20.1 Principio da Reflexao Reprodutoria

A logica e quase poetica:

* copiar acelera entrega
* adaptar “na unha” parece barato
* cada copia vira uma variante do original

No inicio, a equipe sente ganho real de velocidade. Depois, cada alteracao exige cacar
todas as duplicacoes, e sempre sobra uma esquecida.

20.2 Exemplo didatico

if (usuario == null || usuario.getStatus().equals("INATIVO")) {
throw new RegraDeNegocioException("Usuario invalido");

}

if (usuario == null || usuario.getStatus().equals("INATIVO")) {

throw new RegraDeNegocioException("Usuario invalido");

85

86 CAPITULO 20. RCP PATTERN (REUSE BY COPY AND PASTE)

}

if (usuario == null || usuario.getStatus().equals("INATIVO") || usuario.isBloqueado()) {
throw new RegraDeNegocioException("Usuario invalido");

}

Quando a regra muda, A e B atualizam. C fica diferente. Surge bug “aleatorio” por diver-
gencia de comportamento.

20.3 Smells associados

* duplicacao de codigo

* shotgun surgery (uma mudanca, muitos arquivos)
* incoerencia de regra entre fluxos “parecidos”

* testes repetitivos cobrindo variacoes acidentais

Esse padrao costuma ser invisivel no code review rapido, porque cada trecho isolado “faz
sentido”. O problema esta na soma.

20.4 Por que times caem nisso

* backlog pressionando por throughput

¢ ausencia de componentes reutilizaveis simples

* medo de refatorar codigo compartilhado e quebrar legado
* cultura de “depois a gente organiza”

No contexto certo, copiar e colar e uma decisao taticamente racional. O erro e transformar
tatica emergencial em estrategia permanente.

20.5 Evolucao didatica

20.5.1 Versao com copia

if (pedido == null || pedido.getItens().isEmpty()) {
throw new RegraDeNegocioException("Pedido invalido");

20.5.2 Versao com encapsulamento minimo

public final class ValidadorPedido {
public static void validar(Pedido pedido) {

20.6. ESTRATEGIA PRATICA PARA LEGADO 87

if (pedido == null || pedido.getItens().isEmpty()) {
throw new RegraDeNegocioException("Pedido invalido");

ValidadorPedido.validar(pedido);

Agora a regra tem dono unico. Mudou uma vez, mudou para todos.

20.6 Estrategia pratica para legado

medir duplicacao dos trechos criticos
criar utilitario/servico pequeno para regra comum
migrar usos aos poucos (por modulo)

Ll

cobrir com testes de contrato

Sem “big bang”. Sem promessa heroica.

20.7 Resumo POG

RCP e maravilhoso para nascer software rapido e produzir variacoes criativas de bug. Em
projetos longos, vira multiplicador de custo de manutencao.

No dicionario POGramador: e clonar problema em alta disponibilidade para garantir de-
manda futura da sustentacao.

88

CAPITULO 20. RCP PATTERN (REUSE BY COPY AND PASTE)

Capitulo 21

Hardcoded Data

No Hardcoded Data, dado de configuracao, regra de negocio e detalhe de ambiente sao
colocados diretamente no codigo-fonte. O mantra e simples: “se esta no codigo, eu sei
onde esta”.

O problema e que o codigo vira ao mesmo tempo executavel, banco de parametros e painel
operacional.

21.1 Exemplo classico

infoImpressao = ImpressaoUtils.getInfoImpressao(codigoRelatorio, "PADRAQO");

Hoje e o nome da impressora. Amanha e URL de servico, aliquota fiscal, chave de parceiro
e data de corte. Em poucas sprints, o deploy vira painel de configuracao manual.

21.2 Sinais de que o padrao tomou conta

* strings magicas repetidas em varias classes

* alteracao de regra operacional exigindo merge + pipeline

* ambiente homolog/producao diferenciados por if (isProd)
* chamados de negocio resolvidos com “vamos subir patch”

Quando mudar um texto de mensagem exige release, o Hardcoded Data venceu.

21.3 Por que ele aparece

* pressa para colocar funcionalidade no ar
 falta de estrategia de configuracao por ambiente
* legado sem centralizacao de parametros

89

90 CAPITULO 21. HARDCODED DATA

* medo de criar tabela/config store “mais uma vez”

No curto prazo, parece pratico. No longo, todo ajuste vira risco de regressao funcional.

21.4 Exemplo didatico de evolucao

21.4.1 Versao POG

public void emitirRelatorio() {
String impressora = "PADRAO";
String endpoint = "https://api.parceiro.com/v1l";
int timeout = 30;
/] ...

21.4.2 Versao com configuracao explicita

public class ConfiguracaoRelatorio {
private final String impressoraPadrao;
private final String endpointParceiro;
private final int timeoutSegundos;

public ConfiguracaoRelatorio(String impressoraPadrao, String endpointParceiro, int timeoutS
this.impressoraPadrao = impressoraPadrao;
this.endpointParceiro = endpointParceiro;
this.timeoutSegundos = timeoutSegundos;

public String getImpressoraPadrao() { return impressoraPadrao; }
public String getEndpointParceiro() { return endpointParceiro; }
public int getTimeoutSegundos() { return timeoutSegundos; }

public void emitirRelatorio(ConfiguracaoRelatorio cfg) {
// usa cfg sem chutar valor em runtime

}

A regra sai do codigo e vai para contrato de configuracao. Resultado: menos release de
emergencia para ajuste operacional.

21.5 Impactos de negocio

¢ time de produto depende de dev para mudar qualquer parametro

21.6. CORRECAO SEM TRAUMA 91

* incidentes aumentam por ajustes urgentes em horario critico
* rollback de versao pode desfazer configuracoes validas
e auditoria fica fraca (quem mudou o que e quando?)

21.6 Correcao sem trauma

mapear constantes criticas (URL, timeout, codigos de regra)
extrair para configuracao externa versionada
manter default seguro apenas onde fizer sentido

=W N e

adicionar validacao na inicializacao do sistema

Assim voce reduz acoplamento sem parar a entrega.

21.7 Resumo POG

Hardcoded Data e a forma mais rapida de transformar deploy em ferramenta administrativa.
Funciona enquanto o sistema e pequeno. Quando cresce, vira gargalo organizacional.

No linguajar POGristico: e tatuar instrucoes operacionais no corpo do programa e fingir
surpresa quando mudar de ideia doi.

92

CAPITULO 21. HARDCODED DATA

Capitulo 22

Forceps

O Forceps e o padrao obstetrico da POG. Ele aparece quando uma variavel nao recebe o
valor esperado e, em vez de investigar causa raiz, o POGramador “puxa” o valor correto no
ponto de uso.

Em termos praticos, e a arte de corrigir o sintoma localmente para manter o fluxo vivo.
Funciona hoje. Custa caro amanha.

22.1 Exemplo classico

String valor = "123";

if (!"123".equals(valor)) {
valor = "123";
processaValor(valor);

}

O trecho parece inocente. Mas repare no que ele comunica: “se veio errado, conserta aqui
mesmo”. Isso cria uma blindagem local que mascara o defeito real do fluxo.

22.2 Como reconhecer o Forceps no codigo

 verificacoes redundantes do mesmo valor em varios pontos
 atribuicoes “defensivas” copiadas entre metodos
* comentarios tipo “garantia extra para evitar bug intermitente”

93

94 CAPITULO 22. FORCEPS

* logica de negocio baseada em fallback manual

Quando voce encontra o mesmo if em cinco classes diferentes, ja existe um ritual de For-
ceps consolidado.

22.3 Por que o time adota isso

Motivos reais:

* bug em producao sem tempo para investigacao profunda
* desconhecimento do fluxo completo em legado grande

* medo de tocar na origem e quebrar outras telas

* cultura de apagar incendio primeiro e pensar depois

Ou seja, o Forceps quase nunca nasce por maldade. Ele nasce por sobrevivencia operacio-
nal.

22.4 Impactos no medio prazo

* causa raiz segue ativa

¢ inconsistencias se espalham em silencio

* manutencao fica confusa (qual ponto esta “corrigindo” o que?)
* testes passam sem garantir consistencia global

No fim, o sistema vira uma colcha de microcorrecoes. Cada parte se protege da outra.

22.5 Exemplo didatico de abordagem melhor

public class PedidoService {

public void processar(Pedido pedido) {
String codigo = normalizarCodigo(pedido.getCodigo());
validarCodigo(codigo);
pedido.setCodigo(codigo);
repositorio.salvar(pedido);

private String normalizarCodigo(String codigo) {
if (codigo == null) {
return "123";
}

return codigo.trim();

22.6. ESTRATEGIA PRAGMATICA DE CORRECAO 95

private void validarCodigo(String codigo) {
if (!"123".equals(codigo)) {
throw new RegraDeNegocioException("Codigo invalido para este fluxo");

}

Aqui, a regra fica centralizada. Se a origem estiver ruim, voce tem erro claro para tratar
no ponto certo, em vez de remendo espalhado.

22.6 Estrategia pragmatica de correcao

mapear onde o valor esta sendo forgado
eleger um unico ponto de normalizacao
adicionar teste de contrato para entrada/saida
remover os Forceps duplicados aos poucos

Ll

Isso evita refatoracao heroica e reduz risco de regressao.

22.7 Resumo POG

Forceps e excelente para entregar hoje e manter o chamado fechado. Mas ele nao resolve
defeito sistemico; apenas empurra o problema para frente com juros.

No dialeto POGrames: e um parto feito no corredor. A crianca nasce, mas o prontuario vira
lenda urbana dentro do repositorio.

96

CAPITULO 22. FORCEPS

Capitulo 23

Ostrich Syndrome Skill

O Ostrich Syndrome Skill e a habilidade de enterrar a cabeca tecnicamente: warning,
deprecacao e alerta de analise estatica sao tratados como ruido de fundo.

A filosofia e ancestral:

* 0 que os olhos nao veem, o backlog nao sente
¢ se compila, ta pronto
e warning e ciume da IDE

23.1 Forma ritualistica

@SuppressWarnings("all")
public class ProcessadorLegado {

}

Esse artefato da tranquilidade elimina alertas visiveis, mas nao elimina risco real.

23.2 Sinais no projeto

* dezenas de supressoes globais sem justificativa

* upgrade de dependencia sempre adiado porque “vai quebrar tudo”
 build verde com log amarelo infinito

* regra de review: “nao mexe nisso agora”

Quando warning vira paisagem, defeito vira surpresa.

97

98 CAPITULO 23. OSTRICH SYNDROME SKILL
23.3 Por que acontece

Motivos praticos:

* pressao por entrega imediata

* base legada muito ruidosa

¢ pouca maturidade de observabilidade

* medo de abrir frente tecnica sem patrocinio

Ignorar alerta pode ser decisao temporaria legitima. O problema e quando temporario vira
dogma.

23.4 Exemplo didatico

23.4.1 Versao POG

@SuppressWarnings ("deprecation")
public void salvar(Data data) {
repositorioAntigo.save(data); // API descontinuada ha anos

23.4.2 Versao com controle

public void salvar(Data data) {
// TODO(POG-123): migrar para NovoRepositorio ate 2026-06-30
repositorioAntigo.save(data);

}
Melhor ainda:

public void salvar(Data data) {
if (featureFlags.usarNovoRepositorio()) {
novoRepositorio.save(data);
return;
}
repositorioAntigo.save(data);

}

Nesse formato, alerta vira plano. Nao e so silenciamento.

23.5 Risco acumulado

* vulnerabilidade de dependencia desatualizada
* comportamento removido em upgrade futuro
 dificuldade de onboarding (ninguem sabe o que pode quebrar)

23.6. COMO TRATAR SEM PARALISAR ENTREGA 99

* incidentes em cadeia quando enfim chega a migracao

23.6 Como tratar sem paralisar entrega

classificar warning por severidade

criar “orcamento de warning” por sprint

proibir novas supressoes globais

exigir comentario com ticket e prazo ao suprimir

AN

priorizar deprecacoes em codigo mais usado

Isso reduz ruido progressivamente sem exigir limpeza total imediata.

23.7 Resumo POG

Ostrich Syndrome Skill da alivio emocional no curto prazo e ansiedade tecnica no longo.
Silenciar alerta e facil. Gerenciar consequencia, nem tanto.

No evangelho POGrames: enterramos a cabeca para nao ver o problema, e depois abrimos
incidente para descobrir por que ele cresceu no escuro.

23.8 Mini checklist de mitigacao

Toda supressao de warning deve trazer justificativa tecnica e prazo para revisao. Se nao
houver ticket, dono e data, nao e supressao estrategica: e abandono controlado. A dife-
renca entre pragmatismo e negligencia esta na rastreabilidade da decisao.

Esse controle evita que o warning vire folklore tecnico.

100 CAPITULO 23. OSTRICH SYNDROME SKILL

Capitulo 24

Nonsense Flag Nonsense
Naming

O Nonsense Flag Nonsense Naming transforma nomeacao em criptografia artesanal.
Variaveis nao explicam intencao; elas insinuam, confundem e exigem mediunidade de quem
le.

testel, temp2, a, b, x

jaTrocouDeAba, botaoClicado, foiAtualizado, passouPorAqui
numeroMagico, naoAchou, temErro

anterior5, atual5, anteriorDoAnterior5

Esse padrao costuma vir acompanhado de flags booleans caoticas (is0Ok, isReady?2, pode-
Talvez), criando fluxo de decisao que parece enquete de rede social.

24.1 Efeito semantico

Nome ruim nao e so “feio”. Ele altera custo cognitivo:

* leitura fica lenta

* regra de negocio vira adivinhacao
* review perde profundidade

* bug de entendimento aumenta

Quando o codigo exige reuniao para explicar cada variavel, a manutencao ja quebrou.

101

102 CAPITULO 24. NONSENSE FLAG NONSENSE NAMING

24.2 Exemplo didatico

24.2.1 Versao POG

if (a & 'b & x > 0) {
fazl();

} else if (a & b && x == 0) {
faz2();

24.2.2 Versao legivel

boolean clienteElegivel = cliente.estaAtivo();
boolean pedidoJaFaturado = pedido.isFaturado();
int quantidadeItens = pedido.getItens().size()

’

if (clienteElegivel && !pedidoJaFaturado && quantidadeItens > 0) {
gerarFatura();

} else if (clienteElegivel && pedidoJaFaturado && quantidadeltens == 0) {
registrarInconsistencial();

}

A logica pode ser a mesma. A diferenca e que agora o leitor entende o dominio sem abrir
12 arquivos.

24.3 Por que o time cai nisso

* codigo escrito sob estresse

« falta de padrao de nomeacao

* medo de “nome grande”

* copia de variavel antiga para novo contexto

E comum em legado com baixa cobertura de teste: ninguem renomeia por receio de quebrar
algo invisivel.

24.4 Nonsense Flag: o primo perigoso

Flags sem semantica clara criam combinacoes explosivas.

if (isOk && !isReady && podeAtualizar && modo2) {

24.5. ABORDAGEM PRAGMATICA 103

Cada booleano adicional dobra os estados possiveis. Sem modelagem explicita, o fluxo fica
impossivel de validar mentalmente.

24.5 Abordagem pragmatica

renomear primeiro as variaveis de maior impacto
extrair condicoes para metodos com nome de negocio
substituir multiplos booleans por enum/objeto de estado
registrar convencoes simples de nomeacao no time

Ll

Pequenas mudancas de semantica trazem ganho real sem refatoracao monstruosa.

24.6 Resumo POG

Nonsense Naming e Nonsense Flag dao sensacao de velocidade na digitacao e cobram
pedagio eterno na leitura. O sistema roda, mas o entendimento nao escala.

Na tradicao POGristica: se nem voce entende o nome da variavel depois de uma semana,
o ritual foi concluido com excelencia duvidosa.

24.7 Mini checklist de mitigacao

Renomeacao progressiva de variavel e melhoria de baixo risco e alto retorno. Cada nome
claro reduz duvida em review, onboarding e debug. Sem semantica compartilhada, a equipe
conversa sobre sintaxe e nunca sobre dominio.

104 CAPITULO 24. NONSENSE FLAG NONSENSE NAMING

Capitulo 25

Commented Code
Implementation Comments
Forever

O Commented Code Implementation e o padrao em que codigo morto, codigo desativado
e blocos de experimento ficam comentados para sempre no arquivo “por seguranca”.

A narrativa e conhecida: “nao apaga, vai que precisa depois”.

25.1 Exemplo classico

public void calcular() {

if (cliente.isPremium()) {
total = total.multiply(new BigDecimal("0.85"));

}

O comentario vira arquivo historico embutido no fonte. O problema e que historico verda-
deiro ja existe: chama-se Git.

105

106 CAPITULO 25. COMMENTED CODE IMPLEMENTATION COMMENTS FOREVER
25.2 Problemas que esse padrao cria

* arquivo cresce com ruido sem valor executavel

* leitor nao sabe qual regra vale de fato

* revisao fica lenta, porque ha muito texto irrelevante

* chance de “descomentar” trechos obsoletos por engano

Comentario deveria explicar decisao. Nao substituir versionamento.

25.3 Quando isso comeca

* hotfix de madrugada com medo de perda

* ausencia de confianca em rollback

* equipe sem disciplina de branch/commit claro

* heranca de codigo antigo onde “apagar” e visto como risco

Em contexto de baixa previsibilidade, comentar parece seguro. Na pratica, so adia decisao
tecnica.
25.4 Exemplo didatico de alternativa

25.4.1 Versao POG

TODO

chamadaServicoNovo();

25.4.2 Versao controlada

if (featureFlags.usarFluxoNovo()) {
chamadaServicoNovo();

} else {
chamadaServicoAntigo();

}

Com feature flag, o comportamento fica explicito e rastreavel. Quando migrar tudo, remove-
se o fluxo antigo com commit unico e mensagem clara.

25.5. COMENTARIO BOM X COMENTARIO RUIM 107

25.5 Comentario bom x comentario ruim

Comentario bom:
* registra contexto de negocio ou decisao arquitetural
* explica “por que” algo existe
* aponta ticket/issue quando ha debito tecnico assumido

Comentario ruim:

* replica o que o codigo ja diz
* guarda codigo morto
» serve de escudo para incerteza eterna

25.6 Estrategia pragmatica de limpeza

remover blocos comentados sem uso comprovado
migrar excecoes para tickets rastreaveis
usar feature flag para transicao real

L s

adotar regra de review: codigo comentado executavel nao entra

Isso reduz ruido sem interromper entrega.

25.7 Resumo POG

Commented Code Forever e um museu de decisao incompleta. Parece prudente, mas de-
grada legibilidade e aumenta risco operacional.

Em modo POGramador: e guardar pecas de carro velho na sala para “eventual necessidade”
e chamar isso de estrategia de manutencao preventiva.

25.8 Mini checklist de mitigacao

Codigo morto deve sair do arquivo e ficar no historico do Git. Comentario bom explica
decisao; comentario ruim armazena medo. Se o trecho precisa existir por transicao, feature
flag com prazo e opcao mais segura.

108 CAPITULO 25. COMMENTED CODE IMPLEMENTATION COMMENTS FOREVER

Capitulo 26

Reinvented Square Wheel
Helper

O Reinvented Square Wheel Helper e o padrao de reimplementar manualmente algo
que a linguagem, framework ou biblioteca ja fornece com qualidade melhor.

A motivacao costuma ser nobre: “quero controle total”. O resultado, quase sempre, e uma
roda quadrada de manutencao pesada.

26.1 Exemplo classico

if (number.equals("1")) {
return 1;

} else if (number.equals("2")) {
return 2;

} else if (number.equals("3")) {
return 3;

} else if (number.equals("4")) {
return 4;

} else if (number.equals("5")) {
return 5;

}

Aqui, algo que poderia ser Integer.parselnt(number) vira cascata manual sujeita a erro,
inconsistencia e custo de manutencao absurdo.

26.2 Sintomas do padrao

¢ helpers enormes para funcao basica

109

110 CAPITULO 26. REINVENTED SQUARE WHEEL HELPER

¢ “framework interno” para resolver problema trivial
¢ implementacoes caseiras sem teste robusto
* divergencia entre comportamento esperado e padrao de mercado

Quando o time escreve parser de data na mao em projeto Java moderno, a roda quadrada
ja esta em producao.

26.3 Por que isso acontece

¢ desconhecimento de recurso nativo

e trauma com biblioteca antiga

* desconfianca de dependencia externa
* ego tecnico (“eu faco melhor”)

Nem sempre e vaidade. Muitas vezes e falta de repertorio compartilhado no time.

26.4 Exemplo didatico

26.4.1 Versao POG

public boolean isEmailValido(String email) {

if (email == null) return false;

if (!email.contains("@")) return false;
if (!email.contains(".")) return false;
if (email.startsWith("@")) return false;

// dezenas de regras incompletas. ..
return true;

26.4.2 Versao mais segura

public boolean isEmailValido(String email) {
if (email == null) return false;
return javax.mail.internet.InternetAddress
.parse(email, true)
.length == 1;
}

Voce delega para implementacao madura, reduz bug e foca na regra de negocio real.

26.5 Custo oculto

* aumento de superficie de bug

26.6. CORRECAO PRAGMATICA 111

* onboarding lento (aprender ferramentas internas desnecessarias)
¢ dificuldade de evolucao (cada helper caseiro vira dependente de contexto)
¢ retrabalho em manutencao corretiva

Em resumo: mais codigo para manter sem ganho proporcional de valor.

26.6 Correcao pragmatica

identificar helpers caseiros de alto risco
comparar com API nativa equivalente
migrar gradualmente com testes de comportamento

- e

documentar quando realmente precisar de implementacao propria

Se houver requisito especifico legitimo, mantenha customizacao minima e justificada.

26.7 Resumo POG

Reinvented Square Wheel Helper e o orgulho de construir do zero o que ja existe pronto.
Da sensacao de autoria e traz manutencao vitalicia.

No vocabulario POGristico: e trocar elevador por escada rolante movida a manivela para
provar independencia tecnologica.

26.8 Mini checklist de mitigacao

Antes de criar helper caseiro, responda: existe API nativa madura para isso? Se existir,
o onus da prova e de quem quer reinventar. Em geral, software de negocio ganha mais
quando reutiliza base estavel.

112 CAPITULO 26. REINVENTED SQUARE WHEEL HELPER

Capitulo 27

You Shall Not Pass

O You Shall Not Pass ¢ o padrao de captura total: tudo é envolvido por try/catch amplo,
normalmente com Exception ou Throwable, para garantir que nada “escape”.

A intencao parece nobre: proteger o sistema. O efeito real costuma ser o oposto: esconder
causa raiz, diluir contexto e dificultar manutencao.

27.1 Sintoma classico

public String processar(String entrada) {

try {

return servicoA.executar(entrada);
} catch (Throwable t) {

return "Falha ao processar";

}

Nesse modelo, falhas completamente diferentes viram a mesma resposta:

e erro de validacao

* timeout de rede

* bug de programacao
* erro de banco

* bug de serializagao

Tudo cai no mesmo balaio sem rastreabilidade adequada.

27.2 Por que isso é perigoso

Capturar Throwable é especialmente arriscado porque inclui Error (ex.: OutOfMemoryError),
que em geral nao deveria ser “tratado” como fluxo comum da aplicagao.

113

114 CAPITULO 27. YOU SHALL NOT PASS

Quando o cddigo captura amplo demais:

* o sistema parece estdvel, mas esta cego

* logs uteis somem

* retries automaticos podem repetir operagoes perigosas
* estado inconsistente pode continuar rodando sem alerta

E o equivalente operacional de desligar o alarme de incéndio porque ele faz barulho.

27.3 Exemplo didatico (controle de granularidade)

27.3.1 Versao POG

public Resultado gerarRelatorio(Filtro filtro) {

try {
validar(filtro);
Dados dados = repositorio.buscar(filtro);
byte[] pdf = renderizador.gerarPdf(dados);
return Resultado.ok(pdf);

} catch (Exception e) {
return Resultado.erro("Nao foi possivel gerar relatério");

27.3.2 Versao com tratamento util

public Resultado gerarRelatorio(Filtro filtro) {

try {

validar(filtro);
} catch (ValidacaoException e) {

return Resultado.erro("Filtro invalido: " + e.getMessage());
}

Dados dados;
try {
dados = repositorio.buscar(filtro);
} catch (DataAccessException e) {
logger.error("Falha no banco ao buscar relatorio", e);
return Resultado.erro("Falha temporaria ao consultar dados");

try {
byte[] pdf = renderizador.gerarPdf(dados);

27.4. QUANDO USAR CAPTURA AMPLA, ENTAQO? 115

return Resultado.ok(pdf);
} catch (RenderizacaoException e) {
logger.error("Falha ao renderizar PDF", e);
return Resultado.erro("Nao foi possivel gerar o arquivo PDF");

}

Aqui cada tipo de problema recebe:

* tratamento adequado
* mensagem correta
* log contextualizado

27.4 Quando usar captura ampla, entao?

Existe um uso legitimo: fronteiras globais de aplicacao (filtro HTTP, middleware, handler
global), para evitar queda abrupta e registrar erro inesperado.

Mesmo nesses casos:

* capture para registrar e encerrar com seguranca
* nao converta tudo em “deu ruim” sem contexto
* nao continue fluxo normal apés falha critica

27.5 Estratégia de correcao gradual

Se seu legado estd dominado por catch genérico:

1. mapeie os pontos com maior volume de erro

2. substitua captura genérica por excecoes especificas

3. adicione logs com contexto de negdécio (id, operacao, usudrio)
4. padronize respostas por categoria de erro

5. mantenha fallback global para o que for realmente inesperado

Essa abordagem reduz risco sem parar o trem.

27.6 Resumo POG

You Shall Not Pass nasce da boa intencao de blindar o sistema, mas frequentemente vira
blindagem contra diagndstico. O cédigo até “nao quebra” na frente do usuario, porém
quebra a capacidade do time de entender e corrigir problemas.

No fim, erro que ndo aparece ndo desaparece. Ele sé muda de lugar: sai da tela e vai morar
no backlog eterno da sustentacao.

116 CAPITULO 27. YOU SHALL NOT PASS

Capitulo 28

Perfectness Execution
Bulletproof

O Bulletproof ¢ o padrdo em que toda operacgdo, independentemente do que aconteca,
termina com mensagem de sucesso. Deu certo? Sucesso. Deu errado? Sucesso também.
Explodiu? Sucesso com fé.

try {
if (alterar(valorl, valor2)) {
return new Mensagem("Operacao concluida com sucesso!");
} else {
return new Mensagem("Operacdo concluida com sucesso!");

}
} catch (Throwable e) {
return new Mensagem("Operacao concluida com sucesso!");

}

Na superficie, parece experiéncia positiva para o usuario. No fundo, é supressao sistema-
tica da realidade.

28.1 Como esse padrao se instala

Ele costuma surgir quando o time sofre pressao por indicadores simplistas, tipo:

* “ndo pode aparecer erro para o usuario”
¢ “precisamos reduzir chamados”
* “a tela sempre deve retornar ok”

Em vez de melhorar validagao, observabilidade e tratamento adequado, adota-se o atalho:
uniformizar resposta de sucesso. O bug deixa de ser visivel, mas continua existindo.

117

118 CAPITULO 28. PERFECTNESS EXECUTION BULLETPROOF

28.2 Exemplo didatico (problema real disfarcado)

Imagine um endpoint de atualizacao cadastral:

public Mensagem atualizarEmail(Long usuarioId, String novoEmail) {

try {
Usuario usuario = usuarioRepository.findById(usuarioId).orElse(null);

if (usuario == null) {

return new Mensagem("Operacao concluida com sucesso!");

usuario.setEmail (novoEmail);
usuarioRepository.save(usuario);

// Se save falhar por constraint, cai no catch e também retorna sucesso.

return new Mensagem("Operacao concluida com sucesso!");
} catch (Exception e) {
return new Mensagem("Operacdo concluida com sucesso!");

}
O usuario recebe sucesso mesmo quando:

* ID nao existe

* e-mail é invalido

* banco estd indisponivel
 transacao foi revertida

Isso sabota o ciclo de feedback da aplicacgao.

28.3 Efeito colateral em cadeia

O Bulletproof cria danos silenciosos:

* suporte nao consegue reproduzir erro porque “o sistema diz que deu certo”

* monitoramento perde sinal util

* inconsisténcia de dados cresce sem alarme

e times consumidores da API tomam decisoes erradas com base em falso positivo

E o equivalente a arrancar a luz do painel do carro para “resolver” o aviso do éleo.

28.4 Versao didatica melhor (sem perder UX)

Vocé pode ser amigavel com usuario sem mentir para ele:

28.5. QUANDO O BULLETPROOF JA ESTA EM PRODUCAO 119

public ResultadoAtualizacao atualizarEmail(Long usuariold, String novoEmail) {
if (novoEmail == null || !novoEmail.contains("@")) {
return ResultadoAtualizacao.falha("E-mail invalido");

Usuario usuario = usuarioRepository.findById(usuarioId).orElse(null);

if (usuario == null) {

return ResultadoAtualizacao.falha("Usuario ndo encontrado");
}
try {

usuario.setEmail (novoEmail);
usuarioRepository.save(usuario);
return ResultadoAtualizacao.sucesso("E-mail atualizado com sucesso");
} catch (DataAccessException e) {
// Log técnico detalhado para equipe
logger.error("Falha ao atualizar e-mail do usuario {}", usuariold, e);
// Mensagem amigavel para usuario
return ResultadoAtualizacao.falha("Nao foi possivel concluir agora. Tente novamente.

}
Aqui vocé tem:

* resultado honesto

* mensagem compreensivel

* log técnico para diagndstico

» separacgao entre erro de negécio e erro de infraestrutura

28.5 Quando o Bulletproof ja esta em producao

Nao precisa reescrever tudo de uma vez. Estratégia incremental:

mapear endpoints com maior taxa de chamado

trocar retorno Unico por contrato de sucesso/falha

manter compatibilidade externa temporaria

instrumentar logs e métricas antes de mudar comportamento de UI

ok W=

remover catch genérico com retorno otimista

28.6 Resumo POG

Bulletproof é a prova de bala mais famosa da POG: ndo impede o tiro, sé apaga o buraco
da parede no relatoério. Ele melhora aparéncia de curto prazo e destréi confianga sistémica

120 CAPITULO 28. PERFECTNESS EXECUTION BULLETPROOF

no longo prazo.

Sistema confiadvel ndo é o que “sempre responde sucesso”. E o que responde a verdade,
com contexto e previsibilidade. O restante é maquiagem operacional com prazo de validade

curto.

Capitulo 29

Exception Success

O Exception Success ¢é o padrao em que a excecdo deixa de representar situacao excepci-
onal e passa a ser usada como fluxo normal da aplicagdo. Em vez de retornar um resultado,
o cédigo “comunica” sucesso, validagao, autorizacao e até regra de negdcio por throw.

Na teoria, excecdo deveria sinalizar algo fora do caminho esperado. Na pratica POG, ela
vira API oficial da casa.

public static void somar(int a, int b) {
System.out.println(a + b);

throw new RuntimeException("Operacao realizada com sucesso!");

29.1 Como reconhecer esse padrao

Vocé provavelmente estd diante de um Exception Success quando vé este combo:

» métodos “felizes” que sempre terminam com throw

* catch (Exception e) decidindo regra de negdcio

* mensagem de usuario final embutida em exception técnica

 sistema que “funciona” s6 porque alguém conhece a ordem dos catch

Outro sinal tipico é a classe de servigo com assinatura sem retorno util, e toda decisdo
sendo tomada no controlador por blocos de captura.

29.2 Exemplo didatico (versao POG)

public void processarPagamento(Pagamento pagamento) throws Exception {
if (pagamento == null) {
throw new Exception("Pagamento invalido");

121

122 CAPITULO 29. EXCEPTION SUCCESS

if (pagamento.getValor() <= 0) {
throw new Exception("Valor deve ser maior que zero");

gateway.cobrar(pagamento);

// "Sucesso" sinalizado por excec¢ao para cair no catch correto
throw new Exception("PAGAMENTO OK");

public String concluir(Pagamento pagamento) {
try {
processarPagamento(pagamento) ;
return "Fluxo inesperado"; // nunca chega aqui
} catch (Exception e) {
if ("PAGAMENTO OK".equals(e.getMessage())) {
return "Pagamento concluido";

}

return "Falha: " + e.getMessage();

}

Esse codigo parece “esperto” no curto prazo, porque centraliza tudo no catch. O problema
€ que mistura semanticas diferentes no mesmo canal:

e erro de infraestrutura
 erro de validacao
¢ estado de sucesso

Quando tudo vira excecao, nada mais é excecgao.

29.3 Por que isso aparece em projeto real

Esse padrao nasce por combinacao de pressa, legado e falta de contrato claro entre cama-
das. E comum em contexto onde o time precisa “fazer entrar em producéo hoje” e adota
solugdes improvisadas:

* ndo havia tipo de retorno definido
* 0 sistema ja tinha muito try/catch espalhado
* cada dev adicionou mais um throw para nao quebrar fluxo antigo

Também aparece como versao digital do cargo cult programming: alguém viu que um throw

29.4. IMPACTOS TECNICOS 123

resolveu um bug especifico, copiou a técnica, e passou a reproduzir o ritual sem entender
o efeito colateral.

29.4 Impactos técnicos

Os danos costumam ser progressivos:

* observabilidade piora, porque logs ficam poluidos com “erros” que ndo sao erros

* monitoramento dispara alerta falso

* leitura do cédigo fica ambigua

* testes ficam frageis, pois dependem de mensagens textuais

* qualquer internacionalizagdo quebra regra de negdcio baseada em e.getMessage()

Em sistemas Java, isso ainda conflita com a intengao da prépria linguagem e bibliotecas,
que tratam excegOes como mecanismo de anomalia de execucao, nao como retorno padrao.

29.5 Exemplo didatico (versao menos caoédtica)

public final class ResultadoPagamento {
private final boolean sucesso;
private final String mensagem;

private ResultadoPagamento(boolean sucesso, String mensagem) {
this.sucesso = sucesso;
this.mensagem = mensagem;

public static ResultadoPagamento ok(String mensagem) {
return new ResultadoPagamento(true, mensagem);

public static ResultadoPagamento falha(String mensagem) {
return new ResultadoPagamento(false, mensagem);

public boolean isSucesso() { return sucesso; }
public String getMensagem() { return mensagem; }

public ResultadoPagamento processarPagamento(Pagamento pagamento) {
if (pagamento == null) {
return ResultadoPagamento.falha("Pagamento invalido");

124 CAPITULO 29. EXCEPTION SUCCESS

if (pagamento.getValor() <= 0) {
return ResultadoPagamento.falha("Valor deve ser maior que zero");

try {
gateway.cobrar(pagamento) ;
return ResultadoPagamento.ok("Pagamento concluido");
} catch (GatewayIndisponivelException e) {
// aqui sim: excecao realmente excepcional
return ResultadoPagamento.falha("Gateway indisponivel");

}

Perceba a diferenca didatica:

« fluxo de negdcio usa retorno explicito
« excecao fica para falha inesperada/infraestrutura
» contrato fica legivel para quem mantém depois

29.6 Resumo POG

Exception Success é sedutor porque parece reduzir coédigo no inicio. Sé que ele troca
clareza por truque, e truque em software envelhece mal. Em termos gambiarristicos, é
uma técnica de “entrega imediata com juros compostos”.

Se ainda existir Exception Success no seu sistema, nao precisa derrubar tudo. Comece iso-
lando os pontos criticos e separando, pouco a pouco, resultado de negocio de condicao
excepcional. Assim vocé preserva producgdo e reduz o caos sem ferir o GLS.

Capitulo 30

String Sushiman

No String Sushiman, parametros estruturados sao compactados em uma string “lingui-
cao” com delimitadores magicos. Depois, o codigo faz split em camadas e torce para cada
posicao vir no formato correto.

30.1 Exemplo classico

public Tabela montaTabela(String linguicao) {
String[] colunas = linguicao.split("\\|");

for (String coluna : colunas) {

String[] campos = coluna.split(",");

}

Parece rapido para enviar dados sem criar contrato formal. O custo vem depois: qualquer
virgula fora do lugar quebra o parsing inteiro.

30.2 Sinais de maturidade Sushiman

¢ metodo com um unico String recebendo tudo

* documento externo explicando “ordem dos campos” em texto livre
» erros de parse intermitentes conforme dados reais

* codigo cheio de split, trim, substring e try/catch

Quando a validacao e “se nao explodiu, ta valido”, o padrao esta em pleno vigor.

125

126 CAPITULO 30. STRING SUSHIMAN
30.3 Por que aparece

* pressa para integrar sistemas heterogeneos

¢ aversao a criar DTO/JSON/XML formal

* legado com protocolo artesanal

* tentativa de economizar mudancas de assinatura

No curtissimo prazo, pode destravar entrega. No medio, vira debito tecnico dificil de audi-
tar.

30.4 Exemplo didatico

30.4.1 Versao POG
String payload = "nome=Ana,idade=29,ativo=true|nome=Joao,idade=31,ativo=false";

Se um nome vier com virgula ("Ana, Maria"), tudo quebra.

30.4.2 Versao com contrato simples

public record UsuarioDTO(String nome, int idade, boolean ativo) {}

List<UsuarioDTO> usuarios = List.of(
new UsuarioDTO("Ana", 29, true),
new UsuarioDTO("Joao", 31, false)

);

Ou, se fronteira exigir texto, use formato estruturado (JSON/CSV formal) com parser ro-
busto e esquema validado.

30.5 Impacto operacional

* bugs de integracao de dificil reproducao

¢ acoplamento forte ao “formato secreto”

* evolucao dolorosa (adicionar campo quebra consumidores antigos)
* testes extensos so para validar parsing

30.6 Mitigacao pragmatica

mapear strings-protocolo mais criticas
criar parser dedicado com validacao clara
converter cedo para objeto tipado

W

planejar migracao para contrato explicito

30.7. RESUMO POG 127

Mesmo sem reescrever tudo, so de isolar parsing em um ponto voce reduz caos.

30.7 Resumo POG

String Sushiman e arte de empilhar informacao heterogenea em texto linear e chamar
isso de protocolo. Funciona enquanto todos decoram a ordem. Quando alguem esquece,
estoura em producao.

No idioma POGramador: e servir feijoada em rolinho de sushi. Alimenta, mas cada mordida
e um evento imprevisivel.

30.8 Mini checklist de mitigacao

Antes de aceitar uma linguica de string em producao, valide tres pontos: formato versio-
nado, parser unico e erro com mensagem clara. Sem isso, cada consumidor interpreta o
payload de um jeito e a integracao vira loteria. Em ambiente serio, protocolo textual sem
contrato formal e convite para incidente recorrente.

128 CAPITULO 30. STRING SUSHIMAN

Capitulo 31

Sleeper Human Factor

O Sleeper Human Factor aplica atraso artificial para simular processamento, sincronizar
corridas acidentais ou “melhorar percepcao” do usuario. O instrumento ritual e sleep.

public class MedidorDePOGresso implements Runnable {
public void run() {
while (true) {

try {

Thread.sleep(1000);
} catch (InterruptedException exc) {

}
progress.setValue(blablabla.getPorcentagem());

}

No curto prazo, parece resolver sintomas. No longo, vira latencia institucionalizada.

31.1 Onde esse padrao aparece

* interface piscando rapido demais e alguem “acalma” com delay
* integracao eventual falhando e o time adiciona espera fixa

¢ teste instavel ficando “verde” com sleep(2000)

« fila/concorrencia sem sincronizacao correta

Quando o sistema depende de dormir para funcionar, o design acordou errado.

129

130 CAPITULO 31. SLEEPER HUMAN FACTOR
31.2 Motivos reais para adocao

* corrida de thread dificil de reproduzir

* deadline apertado com bug intermitente

» falta de mecanismo de sincronizacao/evento
¢ cultura de “se resolveu, nao mexe”

O Human Factor nao e burrice; e resposta emergencial. O problema e deixar permanente.

31.3 Exemplo didatico

31.3.1 Versao POG

public void enviarNotificacao(Pedido pedido) {
salvar(pedido);

try {
Thread.sleep(3000);
} catch (InterruptedException e) {

}

mensageria.publicar(pedido.getId());

31.3.2 Versao com sincronizacao explicita

public void enviarNotificacao(Pedido pedido) {
Pedido salvo = repositorio.salvar(pedido);

mensageria.publicar(salvo.getId());

}

Se precisar de consistencia assincrona, use evento transacional, fila confirmada ou meca-
nismo de retry com backoff controlado. Nao tempo fixo magico.

31.4 Impacto tecnico

* tempo de resposta pior sem ganho funcional

* throughput reduzido sob carga

e comportamento imprevisivel conforme ambiente
* testes lentos e flakey

Delay fixo pode passar na maquina do dev e falhar em producao, ou vice-versa.

31.5. COMO REMOVER COM BAIXO RISCO 131

31.5 Como remover com baixo risco

localizar sleeps fora de UI de animacao intencional
classificar por finalidade (sincronizacao, UX, workaround)
substituir por evento, callback, lock ou polling robusto com timeout

- N e

medir antes/depois com metrica de latencia

31.6 Sobre UX real

Nem todo atraso e pecado. Em UX, feedback visual minimo pode ser util para comunicar
estado. A diferenca e intencao e local:

* atraso visual controlado na camada de interface: ok
* atraso tecnico para esconder bug de fluxo: risco alto

31.7 Resumo POG

Sleeper Human Factor e anestesia operacional. O paciente para de reclamar por alguns
segundos, mas a causa da dor permanece.

No catecismo POGristico: se o bug corre demais, deita ele no sleep e chama de experiencia
humana otimizada.

132 CAPITULO 31. SLEEPER HUMAN FACTOR

Capitulo 32

Black Cat In A Dark Room

O Black Cat In A Dark Room ¢ o padrao em que um método recebe um Map genérico (ou
estrutura equivalente) com tudo dentro: parametros de entrada, flags de comportamento,
contexto técnico e, as vezes, traumas da sprint passada.

E como procurar um gato preto num quarto escuro: vocé sabe que algo esta 14, mas néo
sabe onde, nem em qual tipo.

32.1 Anatomia da gambiarra

A ideia inicial parece elegante: “em vez de 12 parametros, passo um Map s6”. O problema
é que esse ganho de assinatura vira perda de contrato.

public Object processar(Map<String, Object> params) {
String operacao = (String) params.get("op");
Long clienteld = Long.valueOf(params.get("id").toString());
Boolean urgente = Boolean.valueOf(params.get("urgente").toString());

return servico.executar(operacao, clienteld, urgente);

O compilador para de ajudar cedo. E a validacao passa a ser uma colcha de retalhos em
runtime.

133

134 CAPITULO 32. BLACK CAT IN A DARK ROOM

32.2 Cheiro técnico associado

Esse padrao conversa diretamente com smells conhecidos:

* Long Parameter List disfarcado
* Primitive Obsession (muito dado cru, pouca modelagem)
* Data Clumps (0os mesmos campos reaparecendo juntos em varios lugares)

Na prética, vocé troca uma assinatura verbosa por acoplamento implicito: todo mundo
precisa “saber de cabeca” os nomes mdagicos das chaves.

32.3 Exemplo didatico de evolucao

32.3.1 Versao POG

public void criarBoleto(Map<String, Object> map) {
String nome = (String) map.get("nome");
String documento = (String) map.get("doc");
BigDecimal valor = new BigDecimal(map.get("valor").toString());
String vencimento = (String) map.get("dataVenc");

// varias conversdes, varios riscos silenciosos

32.3.2 Versao com contrato explicito

public record CriarBoletoRequest(
String nome,
String documento,
BigDecimal valor,
LocalDate dataVencimento
) {}

public void criarBoleto(CriarBoletoRequest req) {
// Aqui o compilador ajuda
// e o contrato fica autoexplicativo

}
Beneficios imediatos:

 tipagem forte

¢ documentacao natural na assinatura
 erro detectado antes da producgao

* teste mais simples e legivel

32.4. POR QUE TIMES CONTINUAM USANDO MAP GENERICO 135

32.4 Por que times continuam usando Map genérico

Motivos reais, e nao caricatos:

* integracdo com payload dindmico/legado
¢ tentativa de evitar mudancas em cadeia
* medo de criar classes “demais”

* pressao de prazo

Ou seja: o padrao nao nasce de burrice, nasce de contexto ruim. O problema é quando ele
vira decisao padrdo para tudo.

32.5 Como usar sem virar caos
Se precisar usar Map por fronteira técnica (por exemplo, parser de payload desconhecido),
faca contencao:

1. converta para objeto tipado o mais cedo possivel
2. valide presenca e tipo das chaves logo na entrada
3. nunca propague Map cru pela regra de negdcio

4. centralize mapeamento em um Unico ponto

Assim vocé transforma o quarto escuro em corredor iluminado.

32.6 Resumo POG

Black Cat In A Dark Room ¢ irresistivel no dia de entrega porque parece flexivel. S6 que
flexibilidade sem contrato cobra caro na manutencao.

Em linguagem POGréfica: é uma mochila sem diviséria. Cabe tudo. Vocé s6 ndo acha nada
quando precisa, principalmente em producgédo as 17h58 de sexta-feira.

136 CAPITULO 32. BLACK CAT IN A DARK ROOM

Capitulo 33

Mega Zord

O Mega Zord e o padrao da superfuncao: um metodo gigante que concentra multiplas
responsabilidades para “facilitar manutencao”. Em vez de modularizar, funde tudo em
uma unidade colossal.

No discurso: centralizacao. Na pratica: acoplamento total.

33.1 Caracteristicas classicas

¢ centenas ou milhares de linhas em um unico metodo

¢ muitos if, switch e variaveis de controle

» efeitos colaterais em banco, arquivo, API e tela no mesmo fluxo
* baixa cobertura de teste por medo de tocar no bloco

Quando um metodo exige mapa mental para ser lido, o Mega Zord ja atingiu forma com-
pleta.

33.2 Exemplo didatico (versao POG)

public Resultado processarTudo(Pedido pedido, Usuario usuario, Map<String, Object> cfg)

137

138 CAPITULO 33. MEGA ZORD

return resultado;

}

O problema nao e tamanho por si so. E mistura de motivos de mudanca. Uma regra fiscal
muda por motivo A. O email muda por motivo B. Estao presos no mesmo bloco.

33.3 Por que times criam Mega Zord

* evolucao incremental sem refatoracao

* pressa para encaixar regra nova em ponto “que ja funciona”
* baixa confianca em extrair componentes

* ausencia de ownership claro do modulo

A cada sprint, entra “so mais um if”. Em um ano, nasce a criatura.

33.4 Efeito colateral

* regressao frequente

* review superficial (arquivo grande desencoraja analise profunda)
* dependencia de “guardiao do modulo”

* onboarding lento

O sistema fica robusto para quem criou e hostil para o resto da equipe.

33.5 Exemplo de decomposicao minima

public Resultado processarTudo(Pedido pedido, Usuario usuario, Map<String, Object> cfg) {
validarEntrada(pedido, usuario);
Valores valores = calcularValores(pedido, cfg);
PersistenciaOut persistencia = persistirPedido(pedido, valores);
integrarServicosExternos(persistencia);
notificarPartes(persistencia);
return montarResultado(persistencia);

}

Ainda e um fluxo central, mas com fronteiras internas claras. Isso ja permite teste por
etapa e reduz risco de alteracao.
33.6 Estrategia pragmatica de reducao

1. mapear secoes logicas no metodo gigante
2. extrair uma secao por vez para metodo privado

33.7. RESUMO POG 139
3. adicionar testes de regressao antes/depois da extracao
4. mover etapas estaveis para classes dedicadas

Sem reescrita completa. Sem promessa de refatoracao epica.

33.7 Resumo POG

Mega Zord e poderoso para entrega imediata e aterrorizante para evolucao sustentavel.
Quanto mais cresce, mais caro fica tocar nele.

No sotaque POG: e juntar todos os fios do painel num unico disjuntor e comemorar que
“agora ta centralizado”.

140 CAPITULO 33. MEGA ZORD

Capitulo 34

THUNDER MEGA ZORD

O Thunder Mega Zord e a fusao entre duas potencias da gambiarra: metodo gigantesco
+ contrato opaco com Map de entrada e Object[] de saida. E a tempestade perfeita do
acoplamento.

Processa

param parametros
return
throws Throwable

public static Object[] processar(Map parametros) throws Throwable {

return processado;

}

A assinatura nao diz quase nada. So promete incerteza com confianca.

34.1 Como identificar

* Map sem tipo para entrada complexa

e Object[] com indices sem semantica

¢ throws amplo (Throwable/Exception) para tudo
* javadoc generico sem contrato util

Quando a documentacao diz “Processa” e o retorno e Object[], voce nao tem API: voce tem
adivinhacao.

141

142 CAPITULO 34. THUNDER MEGA ZORD

34.2 Exemplo didatico de risco

Object[] retorno = processar(params);
String status = (String) retorno[0];
BigDecimal total = (BigDecimal) retorno[1l];
Date data = (Date) retorno[2];

Se alguem mudar a ordem interna para [total, status, datal, o compilador nao reclama.
O bug aparece em runtime, geralmente em producao.

34.3 Por que esse padrao surge

* metodo legado cresceu sem contrato formal

» tentativa de evitar criacao de classes de entrada/saida

* integracao rapida entre equipes sem alinhamento de tipos
* “nao mexe na assinatura que quebra tudo”

Em ambientes de prazo extremo, e compreensivel. Em ambiente de manutencao continua,
e erosao programada.

34.4 Versao didatica mais segura

public record ProcessarRequest(Long clienteld, BigDecimal valor, boolean urgente) {}
public record ProcessarResponse(String status, BigDecimal total, LocalDate dataProcessamento) {

public ProcessarResponse processar(ProcessarRequest req) {

return new ProcessarResponse("0K", reqg.valor(), LocalDate.now());

}
Agora:

¢ contrato e autoexplicativo

* compilador ajuda

 mudanca de campo exige ajuste explicito
* teste fica legivel

34.5 Migracao incremental possivel

manter assinatura antiga como adaptador temporario
converter Map para request tipado internamente
devolver response tipado e mapear para Object[] apenas no adaptador

W

migrar consumidores gradualmente

34.6. RESUMO POG 143

Assim voce moderniza sem quebrar tudo de uma vez.

34.6 Resumo POG

Thunder Mega Zord entrega flexibilidade instantanea e debito estrutural de longo prazo.
Ele parece universal porque aceita tudo e devolve qualquer coisa.

No evangelho da TelePOG: se nao souber diagnosticar, reinicia. Se continuar ruim, culpa
a internet e abre outro chamado.

34.7 Mini checklist de mitigacao

Contrato opaco precisa de quarentena: converta entradas e saidas genericas em objetos
tipados na fronteira do metodo. Mesmo que internamente continue legado por um tempo,
essa adaptacao reduz risco imediato e prepara migracao segura dos consumidores.

144 CAPITULO 34. THUNDER MEGA ZORD

Capitulo 35

Controller Confusion

O Controller Confusion ¢ a evolucdo natural do MVC cansado. No discurso, o projeto
ainda “usa camadas”. No cddigo real, o controller virou templo monolitico: valida, trans-
forma, persiste, chama API externa, gera relatério e decide mensagem de tela.

E o padrdo VCC: View/Controller Confusion. Em est4gio avancado, vira CCC: Chaotic
Controller Confusion.

35.1 De onde isso vem

Esse padrdo quase sempre nasce em projeto com uma mistura de:

e prazo curto com escopo longo

¢ time mudando frequentemente

* auséncia de limites claros entre camadas

* cultura de “s6 mais esse if aqui no endpoint”

No inicio, parece uma economia. Vocé evita criar servigo, evita DTO, evita caso de uso. S6
que cada economia dessas vira divida semantica.

Com o tempo, o controller acumula responsabilidades demais e vira equivalente ao anti-
pattern conhecido como God Object: uma entidade central que conhece tudo e acopla
tudo.

35.2 Exemplo didatico (Controller Confusion classico)

@PostMapping("/pedidos")
public ResponseEntity<?> criar(@RequestBody Map<String, Object> body) {
try {

if (body.get("clienteId") == null) {

145

146 CAPITULO 35. CONTROLLER CONFUSION

return ResponseEntity.badRequest().body("clienteld obrigatdrio");

// 2) Regra de negdcio direto no controller
BigDecimal total = new BigDecimal(body.get("total").toString());
if (total.compareTo(BigDecimal.ZERO) <= 0) {

return ResponseEntity.badRequest().body("total invalido");

// 3) Persisténcia direto aqui

PedidoEntity pedido = new PedidoEntity();
pedido.setClienteId(Long.parseLong(body.get("clienteId").toString()));
pedido.setTotal(total);

pedidoRepository.save(pedido);

// 4) Integracdo externa também aqui
String token = authClient.login("usuario", "senha");
freteClient.calcular(token, pedido.getId(), pedido.getTotal());

// 5) Formatacdo de resposta
Map<String, Object> resp = new HashMap<>();
resp.put("id", pedido.getId());
resp.put("status", "CRIADO");
return ResponseEntity.ok(resp);
} catch (Exception e) {
// 6) Tratamento genérico sem contexto
return ResponseEntity.internalServerError().body("erro inesperado");

}

Repare na sobrecarga cognitiva. Um tUnico método mistura varias preocupagoes que mu-
dam por motivos diferentes. Resultado: qualquer ajuste simples vira cirurgia de alto risco.

35.3 Sinais de que virou confusao

* controller com centenas ou milhares de linhas

* mesmo endpoint mexendo em banco, fila, arquivo e API externa

* testes de controller gigantes tentando cobrir regra de negocio

* bugs regressivos frequentes por efeitos colaterais nao intencionais

Isso bate diretamente com smells classicos de engenharia de software: long method, long
parameter list, divergent change e shotgun surgery.

35.4. VERSAO DIDATICA COM SEPARACAO MINIMA 147

35.4 Versao didatica com separacao minima

@PostMapping("/pedidos")
public ResponseEntity<?> criar(@RequestBody CriarPedidoRequest req) {
try {
ResultadoCriacaoPedido resultado = criarPedidoUseCase.executar(req);
return ResponseEntity.status(201).body(resultado);
} catch (ValidacaoException e) {
return ResponseEntity.badRequest().body(e.getMessage());
} catch (IntegracaoException e) {
return ResponseEntity.status(502).body("Falha em integracao externa");

public class CriarPedidoUseCase {
public ResultadoCriacaoPedido executar(CriarPedidoRequest req) {
// validacdo e regras aqui, de forma testavel
// persisténcia via gateway/repositério
// integracées encapsuladas
// retorno explicito

}

Aqui o controller volta ao papel dele: orquestrar I/O HTTP e traduzir resultado para res-
posta. A regra deixa de ficar refém de framework web.

35.5 Como reduzir sem reescrever tudo

Abordagem pragmatica, sprint por sprint:

. escolha um endpoint critico (o mais alterado)
. extraia uma regra para um servigo/caso de uso

1
2
3. mantenha assinatura antiga para nao quebrar cliente
4. adicione teste no caso de uso extraido

5

. repita até o controller emagrecer

Isso evita refatoracéo épica e reduz risco operacional.

35.6 Resumo POG

Controller Confusion é confortavel no curto prazo, cruel no médio e impagavel no longo.
E o padrao ideal para gerar chamados em série e sustentar o emprego de meio time de
sustentacao.

148 CAPITULO 35. CONTROLLER CONFUSION

Se a meta é continuar entregando sem criar um cemitério de endpoint, trate controller
como fronteira e ndo como depodsito. Caso contrario, cedo ou tarde, o MVC vira apenas

uma lenda oral contada para estagiario.

Capitulo 36

No More Layers

No No More Layers, arquitetura em camadas e considerada burocracia. Tudo acontece
no mesmo lugar, normalmente na tela/controlador: validacao, regra de negocio, acesso a
dados e formatacao de resposta.

A promessa e velocidade. O custo e acoplamento total.

36.1 Exemplo classico

private void botaoSalvar Click(Object sender, EventArgs e) {

}

Tudo numa unica rotina de interface. Parece eficiente enquanto o sistema e pequeno.
Quando cresce, cada alteracao de regra exige tocar na tela.

36.2 Consequencias praticas

* baixa reutilizacao de regra de negocio

* testes automatizados dificeis

* dependencia forte de framework de Ul

* regressao em cascata a cada ajuste visual

Quando a troca de banco exige alterar formulario, a separacao de responsabilidades ja
morreu.

149

150 CAPITULO 36. NO MORE LAYERS

36.3 Onde esse padrao e comum

* legados desktop (Delphi, VB6, WinForms)

* sistemas web antigos com script + SQL inline

* projetos que cresceram sem desenho arquitetural
* times pressionados por entregas imediatas

Nao e um problema de tecnologia especifica. E um problema de limite de responsabilidade.

36.4 Exemplo didatico de separacao minima

public Resultado salvarPedido(FormPedido form) {
CriarPedidoInput input = mapear(form);
return criarPedidoUseCase.executar(input);

public Resultado executar(CriarPedidoInput input) {
validar(input);
Pedido pedido = Pedido.novo(input);
repositorio.salvar(pedido);
return Resultado.sucesso(pedido.getId());

}

Aqui a tela para de saber SQL e regra fiscal. Ela apenas traduz entrada/saida.

36.5 Correcao gradual

escolher um fluxo com muita manutencao
extrair regra para servico/caso de uso
manter Ul como adaptador

W

repetir por partes sem reescrita global

Abordagem incremental reduz risco de parada total.

36.6 Beneficio real de manter camadas

* mudanca de regra sem mexer na tela

* possibilidade de reaproveitar fluxo em API/job
* testes de negocio sem subir interface

* codigo mais legivel para onboarding

36.7. RESUMO POG 151

Arquitetura em camadas nao e luxo academico. E estrategia para reduzir custo de mu-
danca.

36.7 Resumo POG

No More Layers e gostoso no curto prazo: menos arquivos, mais entrega rapida. No longo
prazo, transforma cada ajuste simples em operacao delicada.

Na linguagem POG: e cozinhar, atender cliente e lavar prato no mesmo fogao. Da para
fazer. Escalar e outra historia.

36.8 Mini checklist de mitigacao

Se a tela conhece SQL, regra fiscal e formato de resposta externa, a camada de interface
ja esta sobrecarregada. Comece separando apenas uma responsabilidade por sprint. Em
poucos ciclos, o ganho de teste e previsibilidade aparece sem precisar pausar o roadmap.

152 CAPITULO 36. NO MORE LAYERS

Capitulo 37

Db Is Our God

No Db Is Our God, o banco de dados deixa de ser camada de persistencia e vira centro do
universo: regra de negocio, orquestracao de fluxo, validacao, transformacao, geracao de
relatorio e ate HTML.

Tambem conhecido como In DB We Trust.

37.1 Dogmas do padrao

Tudo vai para o banco:

¢ dados e arquivos

* imagens e logs

* regra de negocio em procedure
* tratamento de erro em trigger

¢ composicao de resposta em SQL

A promessa e “centralizar para padronizar”. O risco e concentrar complexidade e gargalo
no mesmo ponto.

37.2 Exemplo didatico

CREATE PROCEDURE processar pedido(
IN p cliente id BIGINT,
IN p valor DECIMAL(10,2)

)
BEGIN

153

154 CAPITULO 37. DB IS OUR GOD

END;

Procedure grande pode funcionar bem em cenario especifico. O problema surge quando
ela vira lugar padrao para toda regra, sem fronteira clara entre dominio e persistencia.

37.3 Sintomas de culto ao banco

* alteracao de regra exige deploy de script + janela de manutencao
¢ time de aplicacao nao entende mais o fluxo completo

* logica espalhada entre app e SQL sem contrato

 dificuldade de testar regra fora do ambiente de banco

Quando o dominio mora em trigger, a aplicacao vira um cliente passivo de eventos invisi-
veis.

37.4 Por que isso acontece

* historico forte de time DBA-centric

¢ performance local excelente em consultas complexas
* legado construido antes de camada de servico madura
* tentativa de garantir consistencia “na marra”

Existe valor real em banco: transacao, integridade referencial, constraints, consulta. O
€excesso e que vira anti-pattern.

37.5 Exemplo de equilibrio pragmatico

* banco cuida de integridade e consulta eficiente
¢ aplicacao cuida de caso de uso e orquestracao
* procedures ficam para cenarios realmente justificados

public void criarPedido(CriarPedidoInput input) {
validarRegras (input);
Pedido pedido = mapper.map(input);
repositorio.salvar(pedido);

}

No banco:

ALTER TABLE pedido
ADD CONSTRAINT chk valor positivo CHECK (valor > 0);

37.6. ESTRATEGIA DE MIGRACAO 155

Cada camada cumpre seu papel.

37.6 Estrategia de migracao

mapear procedures criticas por dominio

separar validacoes de negocio das constraints de integridade
expor regras em camada de aplicacao com testes

manter no banco o que e estrutural e transacional

Ll

Sem guerra santa. Com criterio.

37.7 Resumo POG

Db Is Our God da sensacao de controle total, mas centraliza risco e reduz flexibilidade de
evolucao. Banco e essencial, mas nao precisa ser divindade onipotente do sistema.

No catecismo POGramador: quando tudo e milagre de procedure, qualquer manutencao
vira peregrinacao com janela de madrugada.

156 CAPITULO 37. DB IS OUR GOD

Capitulo 38

Snow White Returns

O Snow White Returns celebra multiplos pontos de retorno em funcoes gigantes. A ideia
original era simplificar casos locais. O uso extremo transforma fluxo em labirinto.

POrque um return claro quando voce pode ter sete, doze ou vinte e um?

38.1 Como o padrao se forma

* metodo cresce sem refatoracao

* cada condicao ganha um return de emergencia

e caminhos de saida se multiplicam sem estrategia
 leitura sequencial deixa de representar fluxo real

Em funcoes pequenas, early return pode melhorar legibilidade. Em funcoes enormes e sem
estrutura, vira desorientacao.

38.2 Exemplo didatico (caotico)

public Resultado processar(Pedido pedido) {
if (pedido == null) return Resultado.erro("pedido nulo");
if (pedido.getItens().isEmpty()) return Resultado.erro("sem itens");

if (!estoqueDisponivel(pedido)) return Resultado.erro("sem estoque");
if (pedido.isRetirada()) {

if (!validarLoja(pedido)) return Resultado.erro("loja invalida");
return Resultado.ok("retirada liberada");

157

158 CAPITULO 38. SNOW WHITE RETURNS

if (pedido.isEntrega()) {
if (!validarEndereco(pedido)) return Resultado.erro("endereco invalido");
if (pedido.getFrete() == null) return Resultado.erro("frete ausente");
return Resultado.ok("entrega liberada");

return Resultado.erro("tipo de entrega desconhecido");

}

Aqui ainda parece legivel porque e curto. Agora imagine isso com 700 linhas e efeitos
colaterais entre condicoes.

38.3 Risco principal

* ponto de saida demais dificulta rastrear estado

* logging e auditoria ficam inconsistentes

* manutencao adiciona novos retornos sem revisar os antigos
* mudanca de regra quebra caminhos esquecidos

No fim, o bug nao esta em um return especifico. Esta na falta de desenho do fluxo.

38.4 Versao mais organizada

public Resultado processar(Pedido pedido) {
validarEntrada(pedido);

if (pedido.isRetirada()) {

return processarRetirada(pedido);

if (pedido.isEntrega()) {
return processarEntrega(pedido);

return Resultado.erro("tipo de entrega desconhecido");

private Resultado processarRetirada(Pedido pedido) {
validarLojaRetirada(pedido);
return Resultado.ok("retirada liberada");

38.5. COMO CORRIGIR SEM GUERRA 159

private Resultado processarEntrega(Pedido pedido) {
validarDadosEntrega(pedido);
return Resultado.ok("entrega liberada");

}

Ainda existem retornos multiplos, mas cada funcao tem escopo pequeno e intencao clara.

38.5 Como corrigir sem guerra

medir funcoes com maior complexidade ciclomatica
extrair blocos por responsabilidade
manter retornos apenas onde aumentam clareza

=W

padronizar log de entrada/saida por fluxo

Nao e sobre proibir return cedo. E sobre evitar floresta de saidas em metodo sem fronteira.

38.6 Resumo POG

Snow White Returns e divertido enquanto o autor lembra o caminho de cada saida. Quando
o contexto muda, vira castelo sem planta baixa.

No idioma POG: cada return extra e uma porta secreta. Bom para quem construiu. Terrivel
para quem herdou.

38.7 Mini checklist de mitigacao

Retornos multiplos so sao problema quando escondem complexidade acidental. Se cada
retorno estiver em funcao pequena e com intencao clara, tudo bem. O anti-pattern surge
quando os retornos viram atalho para evitar modelagem do fluxo principal.

160 CAPITULO 38. SNOW WHITE RETURNS

Capitulo 39

Conclusoes

Chegamos ao fim deste tomo maldito. Se voce leu ate aqui, ha duas possibilidades:

1. voce realmente se interessa por engenharia de software
2. voce esta fugindo de uma task com prazo suicida

Nos dois casos, parabens. Voce demonstrou coragem.

39.1 O que este livro tentou mostrar

A Programacao Orientada a Gambiarra nao e apenas uma piada interna da area. Ela e um
fenomeno real, repetivel e sistemico.

POG nao nasce so de “dev ruim”. Ela nasce do encontro entre:

* pressao de prazo

* processo torto

e contexto incompleto

* incentivo desalinhado

* tomada de decisao sob estresse

Quando esses elementos se alinham, ate equipe boa produz artefardo.

39.2 As quatro grandes licoes

39.2.1 1. Gambiarra e inevitavel

Todo sistema vivo acumula improviso. Isso nao e falha moral. E caracteristica de software
em producao.

Negar essa realidade so piora a qualidade das decisoes.

161

162 CAPITULO 39. CONCLUSOES

39.2.2 2. Nem toda POG e igual

Existe gambiarra tatica, conscientemente aplicada para conter incidente. Existe gambiarra
estrutural, reproduzida por meses sem plano de saida.

Confundir as duas e o caminho mais rapido para virar refem do proprio codigo.

39.2.3 3. Nomear padrao aumenta lucidez

Quando voce chama algo de Controller Confusion, Zipomatic Versioning ou Exception
Success, deixa de discutir no campo da opiniao e passa a discutir no campo da engenharia.

Nome reduz neblina.

39.2.4 4. Saida sempre e gradual

Projeto real nao aceita reforma espiritual instantanea. Quem promete “refatorar tudo” em
uma sprint esta vendendo fanfic.

A evolucao sustentavel vem de pequenos movimentos:

* mapear pontos criticos

* reduzir risco incrementalmente
* proteger fluxo de negocio

* melhorar sem parar entrega

39.3 O paradoxo do POGramador

Quanto mais experiente, menos inocente. Quanto mais conhecimento, menos dogma.
Quanto mais disciplina, menos heroicismo vazio.

O POGramador maduro nao e o que nunca faz gambiarra. E o que sabe exatamente quando,
por que e ate quando vai conviver com ela.

39.4 Sobre culpa e responsabilidade

Se voce se reconheceu em varios capitulos, relaxe: todos nos ja passamos por isso.
A diferenca entre amador e profissional nao esta em nunca errar. Esta em:

* reconhecer o erro cedo

* assumir o impacto

¢ aprender com padrao recorrente

* nao terceirizar culpa para “o sistema”

Redirecao Tangencial diverte por cinco minutos. Responsabilidade tecnica sustenta car-
reira por decadas.

39.5. UM COMPROMISSO PARA LEVAR DAQUI 163

39.5 Um compromisso para levar daqui

Se este livro precisasse terminar com um pacto simples, seria este:
Continue entregando. Mas nunca entregue no automatico.
Pergunte sempre:

¢ qual problema estou resolvendo agora?
¢ qual problema estou criando para depois?
* (quem vai pagar essa conta futura?

Essas tres perguntas, repetidas com honestidade, ja evitam metade das pogs catastroficas
que assombram times inteiros.

39.6 Encerramento

POG e uma arte dominada por muitos, confessada por poucos e negada por quase todos.

Que voce saia deste livro com mais repertorio, mais senso de realidade e menos ilusao de
pureza arquitetural.

E que Lady Murphy siga ao seu lado, nao como maldicao, mas como lembrete:
se algo pode dar errado, alguem vai dar deploy sexta-feira 18h.

POGae.

164 CAPITULO 39. CONCLUSOES

Capitulo 40

Bibliografia Consolidada

Esta segao consolida todas as referéncias citadas ao longo do livro, organizadas por capi-
tulo.

40.1 O que é POG?

[~ref]

40.2 Historia da POG

[~ ref]

165

166 CAPITULO 40. BIBLIOGRAFIA CONSOLIDADA

	Agradecimentos
	Introdução
	O que é POG?
	Sinônimos de Gambiarra
	Programação Orientada a Gambiarra
	Referências
	Notas

	História da POG
	O ser humano é uma máquina de reconhecer padrões
	Não basta reconhecer, tem que espalhar
	Não basta saber contar ovelhas
	Precisamos contar o tempo
	O calendário romano
	O calendário Juliano
	O calendário Gregoriano
	Chama o Ratinho
	Referências
	Notas

	Requisitos da POG
	As dimensões dos Requisitos da POG
	Notas

	Dimensão Humana
	Equipe Apática
	Profissionais Superestimados
	Arquiteto MacGyver
	Gerente Sem Noção
	Cliente Corrosivo
	Usuário Abrasivo
	Intrometido Inepto
	Dobrador de problemas
	Notas

	Dimensão Tecnológica
	Tecnologia Inadequada
	Desconhecimento Técnico
	Obsolescência Adquirida
	Rigidez Arquitetural
	Projeto Malamanhado
	Notas

	Dimensão Estrutural
	Dimensão Processual
	Como reduzir a Dimensão Processual sem matar a produtividade
	Encerramento processual

	Dimensão Temporal
	O próprio tempo
	Os quatro Fs
	Janela de caos combinada
	Como manter a POG sob controle (sem virar monge da engenharia)
	Encerramento temporal

	Príncípios da POG
	O conjunto canonico
	Como esses principios operam
	Principios, Tecnicas e Patterns
	O compromisso do POGramador

	Técnicas da POG
	O que e uma tecnica POG
	Do principio para o teclado
	O arsenal tecnico desta secao
	Niveis de maestria
	Como ler esta parte do livro
	Encerramento da abertura

	Zipomatic versioning
	Como funciona o ritual
	Exemplo do mundo real
	Sinais de que o Zipomatic dominou
	Por que a tecnica surge
	Exemplo didatico de diferenca
	Impacto tecnico e humano
	Como sair sem trauma
	Resumo POG

	Monkey Patching
	Como aparece em projeto real
	Exemplo didatico (JavaScript)
	Exemplo didatico (Python)
	Quando a tecnica pode ser aceitavel
	Sinais de abuso
	Mitigacao pragmatica
	Resumo POG

	Incremental patching debug
	Ritual de aplicacao
	Exemplo classico
	O que quase nunca entra nesse fluxo
	Por que isso e comum
	Exemplo didatico
	Risco acumulado
	Como evoluir sem parar entrega
	Resumo POG

	My precious
	Sinais classicos
	Por que isso acontece
	Exemplo do efeito colateral
	Exemplo didatico de comportamento
	O mito da protecao
	Como desmontar o padrao sem conflito
	Resumo POG

	Psychoding
	Etapas do transe
	Exemplo classico
	Por que Psychoding pega tao facil
	Sinais de que a tecnica virou rotina
	Exemplo didatico de uso consciente
	Como aproveitar pesquisa sem cair em Psychoding
	Risco de longo prazo
	Resumo POG

	Gambi Design Patterns
	O que sao Gambi Design Patterns
	Por que catalogar a desgracenca
	Estrutura dos capitulos desta secao
	Do accidental para o institucional
	Relacao com Tecnicas e Principios
	Uma nota de honestidade
	Encerramento da abertura

	WTF / WTH / QPE
	A assinatura da entidade
	Como esse padrao aparece
	Causa tipica
	Exemplo didatico
	Como evitar o efeito “codigo magico”
	O perigo social do QPE
	Correcao pragmatica
	Resumo POG

	RCP Pattern (Reuse by Copy and Paste)
	Principio da Reflexao Reprodutoria
	Exemplo didatico
	Smells associados
	Por que times caem nisso
	Evolucao didatica
	Estrategia pratica para legado
	Resumo POG

	Hardcoded Data
	Exemplo classico
	Sinais de que o padrao tomou conta
	Por que ele aparece
	Exemplo didatico de evolucao
	Impactos de negocio
	Correcao sem trauma
	Resumo POG

	Forceps
	Exemplo classico
	Como reconhecer o Forceps no codigo
	Por que o time adota isso
	Impactos no medio prazo
	Exemplo didatico de abordagem melhor
	Estrategia pragmatica de correcao
	Resumo POG

	Ostrich Syndrome Skill
	Forma ritualistica
	Sinais no projeto
	Por que acontece
	Exemplo didatico
	Risco acumulado
	Como tratar sem paralisar entrega
	Resumo POG
	Mini checklist de mitigacao

	Nonsense Flag Nonsense Naming
	Efeito semantico
	Exemplo didatico
	Por que o time cai nisso
	Nonsense Flag: o primo perigoso
	Abordagem pragmatica
	Resumo POG
	Mini checklist de mitigacao

	Commented Code Implementation Comments Forever
	Exemplo classico
	Problemas que esse padrao cria
	Quando isso comeca
	Exemplo didatico de alternativa
	Comentario bom x comentario ruim
	Estrategia pragmatica de limpeza
	Resumo POG
	Mini checklist de mitigacao

	Reinvented Square Wheel Helper
	Exemplo classico
	Sintomas do padrao
	Por que isso acontece
	Exemplo didatico
	Custo oculto
	Correcao pragmatica
	Resumo POG
	Mini checklist de mitigacao

	You Shall Not Pass
	Sintoma clássico
	Por que isso é perigoso
	Exemplo didático (controle de granularidade)
	Quando usar captura ampla, então?
	Estratégia de correção gradual
	Resumo POG

	Perfectness Execution Bulletproof
	Como esse padrão se instala
	Exemplo didático (problema real disfarçado)
	Efeito colateral em cadeia
	Versão didática melhor (sem perder UX)
	Quando o Bulletproof já está em produção
	Resumo POG

	Exception Success
	Como reconhecer esse padrão
	Exemplo didático (versão POG)
	Por que isso aparece em projeto real
	Impactos técnicos
	Exemplo didático (versão menos caótica)
	Resumo POG

	String Sushiman
	Exemplo classico
	Sinais de maturidade Sushiman
	Por que aparece
	Exemplo didatico
	Impacto operacional
	Mitigacao pragmatica
	Resumo POG
	Mini checklist de mitigacao

	Sleeper Human Factor
	Onde esse padrao aparece
	Motivos reais para adocao
	Exemplo didatico
	Impacto tecnico
	Como remover com baixo risco
	Sobre UX real
	Resumo POG

	Black Cat In A Dark Room
	Anatomia da gambiarra
	Cheiro técnico associado
	Exemplo didático de evolução
	Por que times continuam usando Map genérico
	Como usar sem virar caos
	Resumo POG

	Mega Zord
	Caracteristicas classicas
	Exemplo didatico (versao POG)
	Por que times criam Mega Zord
	Efeito colateral
	Exemplo de decomposicao minima
	Estrategia pragmatica de reducao
	Resumo POG

	THUNDER MEGA ZORD
	Como identificar
	Exemplo didatico de risco
	Por que esse padrao surge
	Versao didatica mais segura
	Migracao incremental possivel
	Resumo POG
	Mini checklist de mitigacao

	Controller Confusion
	De onde isso vem
	Exemplo didático (Controller Confusion clássico)
	Sinais de que virou confusão
	Versão didática com separação mínima
	Como reduzir sem reescrever tudo
	Resumo POG

	No More Layers
	Exemplo classico
	Consequencias praticas
	Onde esse padrao e comum
	Exemplo didatico de separacao minima
	Correcao gradual
	Beneficio real de manter camadas
	Resumo POG
	Mini checklist de mitigacao

	Db Is Our God
	Dogmas do padrao
	Exemplo didatico
	Sintomas de culto ao banco
	Por que isso acontece
	Exemplo de equilibrio pragmatico
	Estrategia de migracao
	Resumo POG

	Snow White Returns
	Como o padrao se forma
	Exemplo didatico (caotico)
	Risco principal
	Versao mais organizada
	Como corrigir sem guerra
	Resumo POG
	Mini checklist de mitigacao

	Conclusões
	O que este livro tentou mostrar
	As quatro grandes licoes
	O paradoxo do POGramador
	Sobre culpa e responsabilidade
	Um compromisso para levar daqui
	Encerramento

	Bibliografia Consolidada
	O que é POG?
	História da POG

